Files
orchid/orchid-base/src/name.rs

570 lines
19 KiB
Rust

//! Various datatypes that all represent namespaced names.
use std::borrow::Borrow;
use std::hash::Hash;
use std::iter::Cloned;
use std::num::{NonZeroU64, NonZeroUsize};
use std::ops::{Bound, Deref, Index, RangeBounds};
use std::path::Path;
use std::{fmt, slice, vec};
use futures::future::{OptionFuture, join_all};
use itertools::Itertools;
use trait_set::trait_set;
use crate::api;
use crate::interner::{InternMarker, Tok, intern};
trait_set! {
/// Traits that all name iterators should implement
pub trait NameIter = Iterator<Item = Tok<String>> + DoubleEndedIterator + ExactSizeIterator;
}
/// A borrowed name fragment which can be empty. See [VPath] for the owned
/// variant.
#[derive(Hash, PartialEq, Eq)]
#[repr(transparent)]
pub struct PathSlice([Tok<String>]);
impl PathSlice {
/// Create a new [PathSlice]
pub fn new(slice: &[Tok<String>]) -> &PathSlice {
// SAFETY: This is ok because PathSlice is #[repr(transparent)]
unsafe { &*(slice as *const [Tok<String>] as *const PathSlice) }
}
/// Convert to an owned name fragment
pub fn to_vpath(&self) -> VPath { VPath(self.0.to_vec()) }
/// Iterate over the tokens
pub fn iter(&self) -> impl NameIter + '_ { self.into_iter() }
/// Iterate over the segments
pub fn str_iter(&self) -> impl Iterator<Item = &'_ str> {
Box::new(self.0.iter().map(|s| s.as_str()))
}
/// Find the longest shared prefix of this name and another sequence
pub fn coprefix<'a>(&'a self, other: &PathSlice) -> &'a PathSlice {
&self[0..self.iter().zip(other.iter()).take_while(|(l, r)| l == r).count() as u16]
}
/// Find the longest shared suffix of this name and another sequence
pub fn cosuffix<'a>(&'a self, other: &PathSlice) -> &'a PathSlice {
&self[0..self.iter().zip(other.iter()).take_while(|(l, r)| l == r).count() as u16]
}
/// Remove another
pub fn strip_prefix<'a>(&'a self, other: &PathSlice) -> Option<&'a PathSlice> {
let shared = self.coprefix(other).len();
(shared == other.len()).then_some(PathSlice::new(&self[shared..]))
}
/// Number of path segments
pub fn len(&self) -> u16 { self.0.len().try_into().expect("Too long name!") }
pub fn get<I: NameIndex>(&self, index: I) -> Option<&I::Output> { index.get(self) }
/// Whether there are any path segments. In other words, whether this is a
/// valid name
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Obtain a reference to the held slice. With all indexing traits shadowed,
/// this is better done explicitly
pub fn as_slice(&self) -> &[Tok<String>] { self }
/// Global empty path slice
pub fn empty() -> &'static Self { PathSlice::new(&[]) }
}
impl fmt::Debug for PathSlice {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "VName({self})") }
}
impl fmt::Display for PathSlice {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.str_iter().join("::"))
}
}
impl Borrow<[Tok<String>]> for PathSlice {
fn borrow(&self) -> &[Tok<String>] { &self.0 }
}
impl<'a> IntoIterator for &'a PathSlice {
type IntoIter = Cloned<slice::Iter<'a, Tok<String>>>;
type Item = Tok<String>;
fn into_iter(self) -> Self::IntoIter { self.0.iter().cloned() }
}
pub trait NameIndex {
type Output: ?Sized;
fn get(self, name: &PathSlice) -> Option<&Self::Output>;
}
impl<T: NameIndex> Index<T> for PathSlice {
type Output = T::Output;
fn index(&self, index: T) -> &Self::Output { index.get(self).expect("Index out of bounds") }
}
mod idx_impls {
use std::ops;
use super::{NameIndex, PathSlice, conv_range};
use crate::interner::Tok;
impl NameIndex for u16 {
type Output = Tok<String>;
fn get(self, name: &PathSlice) -> Option<&Self::Output> { name.0.get(self as usize) }
}
impl NameIndex for ops::RangeFull {
type Output = PathSlice;
fn get(self, name: &PathSlice) -> Option<&Self::Output> { Some(name) }
}
macro_rules! impl_range_index_for_pathslice {
($range:ident) => {
impl ops::Index<ops::$range<u16>> for PathSlice {
type Output = Self;
fn index(&self, index: ops::$range<u16>) -> &Self::Output {
Self::new(&self.0[conv_range::<u16, usize>(index)])
}
}
};
}
impl_range_index_for_pathslice!(RangeFrom);
impl_range_index_for_pathslice!(RangeTo);
impl_range_index_for_pathslice!(Range);
impl_range_index_for_pathslice!(RangeInclusive);
impl_range_index_for_pathslice!(RangeToInclusive);
}
impl Deref for PathSlice {
type Target = [Tok<String>];
fn deref(&self) -> &Self::Target { &self.0 }
}
impl Borrow<PathSlice> for [Tok<String>] {
fn borrow(&self) -> &PathSlice { PathSlice::new(self) }
}
impl<const N: usize> Borrow<PathSlice> for [Tok<String>; N] {
fn borrow(&self) -> &PathSlice { PathSlice::new(&self[..]) }
}
impl Borrow<PathSlice> for Vec<Tok<String>> {
fn borrow(&self) -> &PathSlice { PathSlice::new(&self[..]) }
}
pub fn conv_bound<T: Into<U> + Clone, U>(bound: Bound<&T>) -> Bound<U> {
match bound {
Bound::Included(i) => Bound::Included(i.clone().into()),
Bound::Excluded(i) => Bound::Excluded(i.clone().into()),
Bound::Unbounded => Bound::Unbounded,
}
}
pub fn conv_range<'a, T: Into<U> + Clone + 'a, U: 'a>(
range: impl RangeBounds<T>,
) -> (Bound<U>, Bound<U>) {
(conv_bound(range.start_bound()), conv_bound(range.end_bound()))
}
/// A token path which may be empty. [VName] is the non-empty,
/// [PathSlice] is the borrowed version
#[derive(Clone, Default, Hash, PartialEq, Eq)]
pub struct VPath(pub Vec<Tok<String>>);
impl VPath {
/// Collect segments into a vector
pub fn new(items: impl IntoIterator<Item = Tok<String>>) -> Self {
Self(items.into_iter().collect())
}
/// Number of path segments
pub fn len(&self) -> usize { self.0.len() }
/// Whether there are any path segments. In other words, whether this is a
/// valid name
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Prepend some tokens to the path
pub fn prefix(self, items: impl IntoIterator<Item = Tok<String>>) -> Self {
Self(items.into_iter().chain(self.0).collect())
}
/// Append some tokens to the path
pub fn suffix(self, items: impl IntoIterator<Item = Tok<String>>) -> Self {
Self(self.0.into_iter().chain(items).collect())
}
/// Partition the string by `::` namespace separators
pub async fn parse(s: &str) -> Self {
Self(if s.is_empty() { vec![] } else { join_all(s.split("::").map(intern)).await })
}
/// Walk over the segments
pub fn str_iter(&self) -> impl Iterator<Item = &'_ str> {
Box::new(self.0.iter().map(|s| s.as_str()))
}
/// Try to convert into non-empty version
pub fn into_name(self) -> Result<VName, EmptyNameError> { VName::new(self.0) }
/// Add a token to the path. Since now we know that it can't be empty, turn it
/// into a name.
pub fn name_with_prefix(self, name: Tok<String>) -> VName {
VName(self.into_iter().chain([name]).collect())
}
/// Add a token to the beginning of the. Since now we know that it can't be
/// empty, turn it into a name.
pub fn name_with_suffix(self, name: Tok<String>) -> VName {
VName([name].into_iter().chain(self).collect())
}
/// Convert a fs path to a vpath
pub async fn from_path(path: &Path, ext: &str) -> Option<(Self, bool)> {
async fn to_vpath(p: &Path) -> Option<VPath> {
let tok_opt_v = join_all(p.iter().map(|c| OptionFuture::from(c.to_str().map(intern)))).await;
tok_opt_v.into_iter().collect::<Option<_>>().map(VPath)
}
match path.extension().map(|s| s.to_str()) {
Some(Some(s)) if s == ext => Some((to_vpath(&path.with_extension("")).await?, true)),
None => Some((to_vpath(path).await?, false)),
Some(_) => None,
}
}
}
impl fmt::Debug for VPath {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "VName({self})") }
}
impl fmt::Display for VPath {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.str_iter().join("::"))
}
}
impl FromIterator<Tok<String>> for VPath {
fn from_iter<T: IntoIterator<Item = Tok<String>>>(iter: T) -> Self {
Self(iter.into_iter().collect())
}
}
impl IntoIterator for VPath {
type Item = Tok<String>;
type IntoIter = vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter { self.0.into_iter() }
}
impl Borrow<[Tok<String>]> for VPath {
fn borrow(&self) -> &[Tok<String>] { self.0.borrow() }
}
impl Borrow<PathSlice> for VPath {
fn borrow(&self) -> &PathSlice { PathSlice::new(&self.0[..]) }
}
impl Deref for VPath {
type Target = PathSlice;
fn deref(&self) -> &Self::Target { self.borrow() }
}
impl<T> Index<T> for VPath
where PathSlice: Index<T>
{
type Output = <PathSlice as Index<T>>::Output;
fn index(&self, index: T) -> &Self::Output { &Borrow::<PathSlice>::borrow(self)[index] }
}
/// A mutable representation of a namespaced identifier of at least one segment.
///
/// These names may be relative or otherwise partially processed.
///
/// See also [Sym] for the immutable representation, and [VPath] for possibly
/// empty values
#[derive(Clone, Hash, PartialEq, Eq)]
pub struct VName(Vec<Tok<String>>);
impl VName {
/// Assert that the sequence isn't empty and wrap it in [VName] to represent
/// this invariant
pub fn new(items: impl IntoIterator<Item = Tok<String>>) -> Result<Self, EmptyNameError> {
let data: Vec<_> = items.into_iter().collect();
if data.is_empty() { Err(EmptyNameError) } else { Ok(Self(data)) }
}
pub async fn deintern(name: impl IntoIterator<Item = api::TStr>) -> Result<Self, EmptyNameError> {
Self::new(join_all(name.into_iter().map(Tok::from_api)).await)
}
/// Unwrap the enclosed vector
pub fn into_vec(self) -> Vec<Tok<String>> { self.0 }
/// Get a reference to the enclosed vector
pub fn vec(&self) -> &Vec<Tok<String>> { &self.0 }
/// Mutable access to the underlying vector. To ensure correct results, this
/// must never be empty.
pub fn vec_mut(&mut self) -> &mut Vec<Tok<String>> { &mut self.0 }
/// Intern the name and return a [Sym]
pub async fn to_sym(&self) -> Sym { Sym(intern(&self.0[..]).await) }
/// If this name has only one segment, return it
pub fn as_root(&self) -> Option<Tok<String>> { self.0.iter().exactly_one().ok().cloned() }
/// Prepend the segments to this name
#[must_use = "This is a pure function"]
pub fn prefix(self, items: impl IntoIterator<Item = Tok<String>>) -> Self {
Self(items.into_iter().chain(self.0).collect())
}
/// Append the segments to this name
#[must_use = "This is a pure function"]
pub fn suffix(self, items: impl IntoIterator<Item = Tok<String>>) -> Self {
Self(self.0.into_iter().chain(items).collect())
}
/// Read a `::` separated namespaced name
pub async fn parse(s: &str) -> Result<Self, EmptyNameError> { Self::new(VPath::parse(s).await) }
pub async fn literal(s: &'static str) -> Self { Self::parse(s).await.expect("empty literal !?") }
/// Obtain an iterator over the segments of the name
pub fn iter(&self) -> impl Iterator<Item = Tok<String>> + '_ { self.0.iter().cloned() }
}
impl fmt::Debug for VName {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "VName({self})") }
}
impl fmt::Display for VName {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.str_iter().join("::"))
}
}
impl IntoIterator for VName {
type Item = Tok<String>;
type IntoIter = vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter { self.0.into_iter() }
}
impl<T> Index<T> for VName
where PathSlice: Index<T>
{
type Output = <PathSlice as Index<T>>::Output;
fn index(&self, index: T) -> &Self::Output { &self.deref()[index] }
}
impl Borrow<[Tok<String>]> for VName {
fn borrow(&self) -> &[Tok<String>] { self.0.borrow() }
}
impl Borrow<PathSlice> for VName {
fn borrow(&self) -> &PathSlice { PathSlice::new(&self.0[..]) }
}
impl Deref for VName {
type Target = PathSlice;
fn deref(&self) -> &Self::Target { self.borrow() }
}
/// Error produced when a non-empty name [VName] or [Sym] is constructed with an
/// empty sequence
#[derive(Debug, Copy, Clone, Default, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct EmptyNameError;
impl TryFrom<&[Tok<String>]> for VName {
type Error = EmptyNameError;
fn try_from(value: &[Tok<String>]) -> Result<Self, Self::Error> {
Self::new(value.iter().cloned())
}
}
/// An interned representation of a namespaced identifier.
///
/// These names are always absolute.
///
/// See also [VName]
#[derive(Clone, Hash, PartialEq, Eq)]
pub struct Sym(Tok<Vec<Tok<String>>>);
impl Sym {
/// Assert that the sequence isn't empty, intern it and wrap it in a [Sym] to
/// represent this invariant
pub async fn new(v: impl IntoIterator<Item = Tok<String>>) -> Result<Self, EmptyNameError> {
let items = v.into_iter().collect_vec();
Self::from_tok(intern(&items[..]).await)
}
/// Read a `::` separated namespaced name.
pub async fn parse(s: &str) -> Result<Self, EmptyNameError> {
Ok(Sym(intern(&VName::parse(s).await?.into_vec()[..]).await))
}
/// Assert that a token isn't empty, and wrap it in a [Sym]
pub fn from_tok(t: Tok<Vec<Tok<String>>>) -> Result<Self, EmptyNameError> {
if t.is_empty() { Err(EmptyNameError) } else { Ok(Self(t)) }
}
/// Grab the interner token
pub fn tok(&self) -> Tok<Vec<Tok<String>>> { self.0.clone() }
/// Get a number unique to this name suitable for arbitrary ordering.
pub fn id(&self) -> NonZeroU64 { self.0.to_api().get_id() }
/// Extern the sym for editing
pub fn to_vname(&self) -> VName { VName(self[..].to_vec()) }
pub async fn from_api(marker: api::TStrv) -> Sym {
Self::from_tok(Tok::from_api(marker).await).expect("Empty sequence found for serialized Sym")
}
pub fn to_api(&self) -> api::TStrv { self.tok().to_api() }
}
impl fmt::Debug for Sym {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "Sym({self})") }
}
impl fmt::Display for Sym {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.str_iter().join("::"))
}
}
impl<T> Index<T> for Sym
where PathSlice: Index<T>
{
type Output = <PathSlice as Index<T>>::Output;
fn index(&self, index: T) -> &Self::Output { &self.deref()[index] }
}
impl Borrow<[Tok<String>]> for Sym {
fn borrow(&self) -> &[Tok<String>] { &self.0[..] }
}
impl Borrow<PathSlice> for Sym {
fn borrow(&self) -> &PathSlice { PathSlice::new(&self.0[..]) }
}
impl Deref for Sym {
type Target = PathSlice;
fn deref(&self) -> &Self::Target { self.borrow() }
}
/// An abstraction over tokenized vs non-tokenized names so that they can be
/// handled together in datastructures. The names can never be empty
#[allow(clippy::len_without_is_empty)] // never empty
pub trait NameLike:
'static + Clone + Eq + Hash + fmt::Debug + fmt::Display + Borrow<PathSlice>
{
/// Convert into held slice
fn as_slice(&self) -> &[Tok<String>] { Borrow::<PathSlice>::borrow(self) }
/// Get iterator over tokens
fn iter(&self) -> impl NameIter + '_ { self.as_slice().iter().cloned() }
/// Get iterator over string segments
fn str_iter(&self) -> impl Iterator<Item = &'_ str> + '_ {
self.as_slice().iter().map(|t| t.as_str())
}
/// Fully resolve the name for printing
#[must_use]
fn to_strv(&self) -> Vec<String> { self.iter().map(|s| s.to_string()).collect() }
/// Format the name as an approximate filename
fn as_src_path(&self) -> String { format!("{}.orc", self.iter().join("/")) }
/// Return the number of segments in the name
fn len(&self) -> NonZeroUsize {
NonZeroUsize::try_from(self.iter().count()).expect("NameLike never empty")
}
/// Like slice's `split_first` except we know that it always returns Some
fn split_first(&self) -> (Tok<String>, &PathSlice) {
let (foot, torso) = self.as_slice().split_last().expect("NameLike never empty");
(foot.clone(), PathSlice::new(torso))
}
/// Like slice's `split_last` except we know that it always returns Some
fn split_last(&self) -> (Tok<String>, &PathSlice) {
let (foot, torso) = self.as_slice().split_last().expect("NameLike never empty");
(foot.clone(), PathSlice::new(torso))
}
/// Get the first element
fn first(&self) -> Tok<String> { self.split_first().0 }
/// Get the last element
fn last(&self) -> Tok<String> { self.split_last().0 }
}
impl NameLike for Sym {}
impl NameLike for VName {}
/// Create a [Sym] literal.
///
/// Both the name and its components will be cached in a thread-local static so
/// that subsequent executions of the expression only incur an Arc-clone for
/// cloning the token.
#[macro_export]
macro_rules! sym {
($seg1:tt $( :: $seg:tt)*) => { async {
$crate::name::Sym::from_tok(
$crate::intern!([$crate::interner::Tok<String>]: &[
$crate::intern!(str: stringify!($seg1)).await
$( , $crate::intern!(str: stringify!($seg)).await )*
])
.await
).unwrap()
}
};
(@NAME $seg:tt) => {}
}
/// Create a [VName] literal.
///
/// The components are interned much like in [sym].
#[macro_export]
macro_rules! vname {
($seg1:tt $( :: $seg:tt)*) => { async {
$crate::name::VName::new([
$crate::intern!(str: stringify!($seg1)).await
$( , $crate::intern!(str: stringify!($seg)).await )*
]).unwrap()
} };
}
/// Create a [VPath] literal.
///
/// The components are interned much like in [sym].
#[macro_export]
macro_rules! vpath {
($seg1:tt $( :: $seg:tt)+) => { async {
$crate::name::VPath(vec![
$crate::intern!(str: stringify!($seg1)).await
$( , $crate::intern!(str: stringify!($seg)).await )+
])
} };
() => {
$crate::name::VPath(vec![])
}
}
/// Create a &[PathSlice] literal.
///
/// The components are interned much like in [sym]
#[macro_export]
macro_rules! with_path_slice {
(@UNIT $tt:tt) => { () };
($seg1:tt $( :: $seg:tt)* in $expr:expr) => { {
use std::future::Future;
use std::ops::Deref as _;
use std::pin::Pin;
const fn count_helper<const N: usize>(_: [(); N]) -> usize { N }
type Output = [Tok<String>; const {
count_helper([() $(, $crate::with_path_slice!(@UNIT $seg))*])
}];
type InternFuture = Pin<Box<dyn Future<Output = Output>>>;
thread_local! {
static VALUE: Pin<std::rc::Rc<async_once_cell::Lazy<Output, InternFuture>>> =
std::rc::Rc::pin(async_once_cell::Lazy::new(Box::pin(async {
[
$crate::intern!(str: stringify!($seg1)).await
$( , $crate::intern!(str: stringify!($seg)).await )+
]
})));
}
VALUE.with(|v| $crate::clone!(v; async move {
let expr = $expr;
let result = v.as_ref().await;
let ps: &PathSlice = $crate::name::PathSlice::new(&result.deref()[..]);
(expr)(ps).await
}))
} };
($expr:expr) => {
let expr = $expr;
(expr)($crate::name::PathSlice::new(&[]))
}
}
#[cfg(test)]
mod test {
use std::borrow::Borrow;
use test_executors::spin_on;
use super::{PathSlice, Sym, VName};
use crate::interner::{Tok, intern};
use crate::name::VPath;
#[test]
fn recur() {
spin_on(async {
let myname = vname!(foo::bar).await;
let _borrowed_slice: &[Tok<String>] = myname.borrow();
let _borrowed_pathslice: &PathSlice = myname.borrow();
let _deref_pathslice: &PathSlice = &myname;
let _as_slice_out: &[Tok<String>] = myname.as_slice();
})
}
#[test]
fn literals() {
spin_on(async {
assert_eq!(
sym!(foo::bar::baz).await,
Sym::new([intern("foo").await, intern("bar").await, intern("baz").await]).await.unwrap()
);
assert_eq!(
vname!(foo::bar::baz).await,
VName::new([intern("foo").await, intern("bar").await, intern("baz").await]).unwrap()
);
assert_eq!(
vpath!(foo::bar::baz).await,
VPath::new([intern("foo").await, intern("bar").await, intern("baz").await])
);
with_path_slice!(foo::bar::baz in |val| async move {
assert_eq!(
val,
PathSlice::new(&[intern("foo").await, intern("bar").await, intern("baz").await])
);
})
.await
})
}
}