in midst of refactor

This commit is contained in:
2024-04-29 21:46:42 +02:00
parent ed0d64d52e
commit aa3f7e99ab
221 changed files with 5431 additions and 685 deletions

View File

@@ -0,0 +1,29 @@
use super::scal_match::scalv_match;
use super::shared::AnyMatcher;
use super::vec_match::vec_match;
use crate::name::Sym;
use crate::rule::matcher::RuleExpr;
use crate::rule::state::State;
#[must_use]
pub fn any_match<'a>(
matcher: &AnyMatcher,
seq: &'a [RuleExpr],
save_loc: &impl Fn(Sym) -> bool,
) -> Option<State<'a>> {
match matcher {
AnyMatcher::Scalar(scalv) => scalv_match(scalv, seq, save_loc),
AnyMatcher::Vec { left, mid, right } => {
if seq.len() < left.len() + right.len() {
return None;
};
let left_split = left.len();
let right_split = seq.len() - right.len();
Some(
scalv_match(left, &seq[..left_split], save_loc)?
.combine(scalv_match(right, &seq[right_split..], save_loc)?)
.combine(vec_match(mid, &seq[left_split..right_split], save_loc)?),
)
},
}
}

View File

@@ -0,0 +1,149 @@
use intern_all::Tok;
use itertools::Itertools;
use super::shared::{AnyMatcher, ScalMatcher, VecMatcher};
use crate::parse::parsed::{Clause, PHClass, Placeholder};
use crate::rule::matcher::RuleExpr;
use crate::rule::vec_attrs::vec_attrs;
use crate::utils::side::Side;
pub type MaxVecSplit<'a> = (&'a [RuleExpr], (Tok<String>, usize, bool), &'a [RuleExpr]);
/// Derive the details of the central vectorial and the two sides from a
/// slice of Expr's
#[must_use]
fn split_at_max_vec(pattern: &[RuleExpr]) -> Option<MaxVecSplit> {
let rngidx = pattern
.iter()
.position_max_by_key(|expr| vec_attrs(expr).map(|attrs| attrs.1 as i64).unwrap_or(-1))?;
let (left, not_left) = pattern.split_at(rngidx);
let (placeh, right) =
not_left.split_first().expect("The index of the greatest element must be less than the length");
vec_attrs(placeh).map(|attrs| (left, attrs, right))
}
#[must_use]
fn scal_cnt<'a>(iter: impl Iterator<Item = &'a RuleExpr>) -> usize {
iter.take_while(|expr| vec_attrs(expr).is_none()).count()
}
#[must_use]
pub fn mk_any(pattern: &[RuleExpr]) -> AnyMatcher {
let left_split = scal_cnt(pattern.iter());
if pattern.len() <= left_split {
return AnyMatcher::Scalar(mk_scalv(pattern));
}
let (left, not_left) = pattern.split_at(left_split);
let right_split = not_left.len() - scal_cnt(pattern.iter().rev());
let (mid, right) = not_left.split_at(right_split);
AnyMatcher::Vec { left: mk_scalv(left), mid: mk_vec(mid), right: mk_scalv(right) }
}
/// Pattern MUST NOT contain vectorial placeholders
#[must_use]
fn mk_scalv(pattern: &[RuleExpr]) -> Vec<ScalMatcher> { pattern.iter().map(mk_scalar).collect() }
/// Pattern MUST start and end with a vectorial placeholder
#[must_use]
fn mk_vec(pattern: &[RuleExpr]) -> VecMatcher {
debug_assert!(!pattern.is_empty(), "pattern cannot be empty");
debug_assert!(pattern.first().map(vec_attrs).is_some(), "pattern must start with a vectorial");
debug_assert!(pattern.last().map(vec_attrs).is_some(), "pattern must end with a vectorial");
let (left, (key, _, nonzero), right) = split_at_max_vec(pattern)
.expect("pattern must have vectorial placeholders at least at either end");
let r_sep_size = scal_cnt(right.iter());
let (r_sep, r_side) = right.split_at(r_sep_size);
let l_sep_size = scal_cnt(left.iter().rev());
let (l_side, l_sep) = left.split_at(left.len() - l_sep_size);
let main = VecMatcher::Placeh { key: key.clone(), nonzero };
match (left, right) {
(&[], &[]) => VecMatcher::Placeh { key, nonzero },
(&[], _) => VecMatcher::Scan {
direction: Side::Left,
left: Box::new(main),
sep: mk_scalv(r_sep),
right: Box::new(mk_vec(r_side)),
},
(_, &[]) => VecMatcher::Scan {
direction: Side::Right,
left: Box::new(mk_vec(l_side)),
sep: mk_scalv(l_sep),
right: Box::new(main),
},
(..) => {
let mut key_order =
l_side.iter().chain(r_side.iter()).filter_map(vec_attrs).collect::<Vec<_>>();
key_order.sort_by_key(|(_, prio, _)| -(*prio as i64));
VecMatcher::Middle {
left: Box::new(mk_vec(l_side)),
left_sep: mk_scalv(l_sep),
mid: Box::new(main),
right_sep: mk_scalv(r_sep),
right: Box::new(mk_vec(r_side)),
key_order: key_order.into_iter().map(|(n, ..)| n).collect(),
}
},
}
}
/// Pattern MUST NOT be a vectorial placeholder
#[must_use]
fn mk_scalar(pattern: &RuleExpr) -> ScalMatcher {
match &pattern.value {
Clause::Atom(a) => ScalMatcher::Atom(a.clone()),
Clause::Name(n) => ScalMatcher::Name(n.clone()),
Clause::Placeh(Placeholder { name, class }) => match class {
PHClass::Vec { .. } => {
panic!("Scalar matcher cannot be built from vector pattern")
},
PHClass::Scalar | PHClass::Name =>
ScalMatcher::Placeh { key: name.clone(), name_only: class == &PHClass::Name },
},
Clause::S(c, body) => ScalMatcher::S(*c, Box::new(mk_any(body))),
Clause::Lambda(arg, body) => ScalMatcher::Lambda(Box::new(mk_any(arg)), Box::new(mk_any(body))),
}
}
#[cfg(test)]
mod test {
use std::rc::Rc;
use intern_all::i;
use super::mk_any;
use crate::location::SourceRange;
use crate::parse::parsed::{Clause, PHClass, PType, Placeholder};
use crate::sym;
#[test]
fn test_scan() {
let ex = |c: Clause| c.into_expr(SourceRange::mock());
let pattern = vec![
ex(Clause::Placeh(Placeholder {
class: PHClass::Vec { nonzero: false, prio: 0 },
name: i!(str: "::prefix"),
})),
ex(Clause::Name(sym!(prelude::do))),
ex(Clause::S(
PType::Par,
Rc::new(vec![
ex(Clause::Placeh(Placeholder {
class: PHClass::Vec { nonzero: false, prio: 0 },
name: i!(str: "expr"),
})),
ex(Clause::Name(sym!(prelude::;))),
ex(Clause::Placeh(Placeholder {
class: PHClass::Vec { nonzero: false, prio: 1 },
name: i!(str: "rest"),
})),
]),
)),
ex(Clause::Placeh(Placeholder {
class: PHClass::Vec { nonzero: false, prio: 0 },
name: i!(str: "::suffix"),
})),
];
let matcher = mk_any(&pattern);
println!("{matcher}");
}
}

View File

@@ -0,0 +1,21 @@
//! Optimized form of macro pattern that can be quickly tested against the AST.
//!
//! # Construction
//!
//! convert pattern into hierarchy of plain, scan, middle
//! - plain: accept any sequence or any non-empty sequence
//! - scan: a single scalar pattern moves LTR or RTL, submatchers on either
//! side
//! - middle: two scalar patterns walk over all permutations of matches
//! while getting progressively closer to each other
//!
//! # Application
//!
//! walk over the current matcher's valid options and poll the submatchers
//! for each of them
mod any_match;
mod build;
mod scal_match;
pub mod shared;
mod vec_match;

View File

@@ -0,0 +1,47 @@
use super::any_match::any_match;
use super::shared::ScalMatcher;
use crate::name::Sym;
use crate::parse::parsed::Clause;
use crate::rule::matcher::RuleExpr;
use crate::rule::state::{State, StateEntry};
#[must_use]
pub fn scal_match<'a>(
matcher: &ScalMatcher,
expr: &'a RuleExpr,
save_loc: &impl Fn(Sym) -> bool,
) -> Option<State<'a>> {
match (matcher, &expr.value) {
(ScalMatcher::Atom(a1), Clause::Atom(a2)) if a1.run().0.parser_eq(&*a2.run().0) =>
Some(State::default()),
(ScalMatcher::Name(n1), Clause::Name(n2)) if n1 == n2 => Some(match save_loc(n1.clone()) {
true => State::from_name(n1.clone(), expr.range.clone()),
false => State::default(),
}),
(ScalMatcher::Placeh { key, name_only: true }, Clause::Name(n)) =>
Some(State::from_ph(key.clone(), StateEntry::Name(n, &expr.range))),
(ScalMatcher::Placeh { key, name_only: false }, _) =>
Some(State::from_ph(key.clone(), StateEntry::Scalar(expr))),
(ScalMatcher::S(c1, b_mat), Clause::S(c2, body)) if c1 == c2 =>
any_match(b_mat, &body[..], save_loc),
(ScalMatcher::Lambda(arg_mat, b_mat), Clause::Lambda(arg, body)) =>
Some(any_match(arg_mat, arg, save_loc)?.combine(any_match(b_mat, body, save_loc)?)),
_ => None,
}
}
#[must_use]
pub fn scalv_match<'a>(
matchers: &[ScalMatcher],
seq: &'a [RuleExpr],
save_loc: &impl Fn(Sym) -> bool,
) -> Option<State<'a>> {
if seq.len() != matchers.len() {
return None;
}
let mut state = State::default();
for (matcher, expr) in matchers.iter().zip(seq.iter()) {
state = state.combine(scal_match(matcher, expr, save_loc)?);
}
Some(state)
}

View File

@@ -0,0 +1,141 @@
//! Datastructures for cached pattern
use std::fmt;
use std::rc::Rc;
use intern_all::Tok;
use itertools::Itertools;
use super::any_match::any_match;
use super::build::mk_any;
use crate::foreign::atom::AtomGenerator;
use crate::name::Sym;
use crate::parse::parsed::PType;
use crate::rule::matcher::{Matcher, RuleExpr};
use crate::rule::state::State;
use crate::utils::side::Side;
pub(super) enum ScalMatcher {
Atom(AtomGenerator),
Name(Sym),
S(PType, Box<AnyMatcher>),
Lambda(Box<AnyMatcher>, Box<AnyMatcher>),
Placeh { key: Tok<String>, name_only: bool },
}
pub(super) enum VecMatcher {
Placeh {
key: Tok<String>,
nonzero: bool,
},
Scan {
left: Box<VecMatcher>,
sep: Vec<ScalMatcher>,
right: Box<VecMatcher>,
/// The separator traverses the sequence towards this side
direction: Side,
},
Middle {
/// Matches the left outer region
left: Box<VecMatcher>,
/// Matches the left separator
left_sep: Vec<ScalMatcher>,
/// Matches the middle - can only ever be a plain placeholder
mid: Box<VecMatcher>,
/// Matches the right separator
right_sep: Vec<ScalMatcher>,
/// Matches the right outer region
right: Box<VecMatcher>,
/// Order of significance for sorting equally good projects based on
/// the length of matches on either side.
///
/// Vectorial keys that appear on either side, in priority order
key_order: Vec<Tok<String>>,
},
}
pub(super) enum AnyMatcher {
Scalar(Vec<ScalMatcher>),
Vec { left: Vec<ScalMatcher>, mid: VecMatcher, right: Vec<ScalMatcher> },
}
impl Matcher for AnyMatcher {
fn new(pattern: Rc<Vec<RuleExpr>>) -> Self { mk_any(&pattern) }
fn apply<'a>(
&self,
source: &'a [RuleExpr],
save_loc: &impl Fn(Sym) -> bool,
) -> Option<State<'a>> {
any_match(self, source, save_loc)
}
}
// ################ Display ################
impl fmt::Display for ScalMatcher {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Atom(a) => write!(f, "{a:?}"),
Self::Placeh { key, name_only } => match name_only {
false => write!(f, "${key}"),
true => write!(f, "$_{key}"),
},
Self::Name(n) => write!(f, "{n}"),
Self::S(t, body) => write!(f, "{}{body}{}", t.l(), t.r()),
Self::Lambda(arg, body) => write!(f, "\\{arg}.{body}"),
}
}
}
impl fmt::Display for VecMatcher {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Placeh { key, nonzero: true } => write!(f, "...${key}"),
Self::Placeh { key, nonzero: false } => write!(f, "..${key}"),
Self::Scan { left, sep, right, direction } => {
let arrow = if direction == &Side::Left { "<==" } else { "==>" };
write!(f, "Scan{{{left} {arrow} {} {arrow} {right}}}", sep.iter().join(" "))
},
Self::Middle { left, left_sep, mid, right_sep, right, .. } => {
let left_sep_s = left_sep.iter().join(" ");
let right_sep_s = right_sep.iter().join(" ");
write!(f, "Middle{{{left}|{left_sep_s}|{mid}|{right_sep_s}|{right}}}")
},
}
}
}
impl fmt::Display for AnyMatcher {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Scalar(s) => {
write!(f, "({})", s.iter().join(" "))
},
Self::Vec { left, mid, right } => {
let lefts = left.iter().join(" ");
let rights = right.iter().join(" ");
write!(f, "[{lefts}|{mid}|{rights}]")
},
}
}
}
// ################ External ################
/// A [Matcher] implementation that builds a priority-order tree of the
/// vectorial placeholders and handles the scalars on leaves.
pub struct VectreeMatcher(AnyMatcher);
impl Matcher for VectreeMatcher {
fn new(pattern: Rc<Vec<RuleExpr>>) -> Self { Self(AnyMatcher::new(pattern)) }
fn apply<'a>(
&self,
source: &'a [RuleExpr],
save_loc: &impl Fn(Sym) -> bool,
) -> Option<State<'a>> {
self.0.apply(source, save_loc)
}
}
impl fmt::Display for VectreeMatcher {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.0.fmt(f) }
}

View File

@@ -0,0 +1,95 @@
use std::cmp::Ordering;
use itertools::Itertools;
use super::scal_match::scalv_match;
use super::shared::VecMatcher;
use crate::name::Sym;
use crate::rule::matcher::RuleExpr;
use crate::rule::state::{State, StateEntry};
#[must_use]
pub fn vec_match<'a>(
matcher: &VecMatcher,
seq: &'a [RuleExpr],
save_loc: &impl Fn(Sym) -> bool,
) -> Option<State<'a>> {
match matcher {
VecMatcher::Placeh { key, nonzero } => {
if *nonzero && seq.is_empty() {
return None;
}
return Some(State::from_ph(key.clone(), StateEntry::Vec(seq)));
},
VecMatcher::Scan { left, sep, right, direction } => {
if seq.len() < sep.len() {
return None;
}
for lpos in direction.walk(0..=seq.len() - sep.len()) {
let rpos = lpos + sep.len();
let state = vec_match(left, &seq[..lpos], save_loc)
.and_then(|s| Some(s.combine(scalv_match(sep, &seq[lpos..rpos], save_loc)?)))
.and_then(|s| Some(s.combine(vec_match(right, &seq[rpos..], save_loc)?)));
if let Some(s) = state {
return Some(s);
}
}
None
},
// XXX predict heap space usage and allocation count
VecMatcher::Middle { left, left_sep, mid, right_sep, right, key_order } => {
if seq.len() < left_sep.len() + right_sep.len() {
return None;
}
// Valid locations for the left separator
let lposv = seq[..seq.len() - right_sep.len()]
.windows(left_sep.len())
.enumerate()
.filter_map(|(i, window)| scalv_match(left_sep, window, save_loc).map(|s| (i, s)))
.collect::<Vec<_>>();
// Valid locations for the right separator
let rposv = seq[left_sep.len()..]
.windows(right_sep.len())
.enumerate()
.filter_map(|(i, window)| scalv_match(right_sep, window, save_loc).map(|s| (i, s)))
.collect::<Vec<_>>();
// Valid combinations of locations for the separators
let mut pos_pairs = lposv
.into_iter()
.cartesian_product(rposv)
.filter(|((lpos, _), (rpos, _))| lpos + left_sep.len() <= *rpos)
.map(|((lpos, lstate), (rpos, rstate))| (lpos, rpos, lstate.combine(rstate)))
.collect::<Vec<_>>();
// In descending order of size
pos_pairs.sort_by_key(|(l, r, _)| -((r - l) as i64));
let eql_clusters = pos_pairs.into_iter().group_by(|(al, ar, _)| ar - al);
for (_gap_size, cluster) in eql_clusters.into_iter() {
let best_candidate = cluster
.into_iter()
.filter_map(|(lpos, rpos, state)| {
Some(
state
.combine(vec_match(left, &seq[..lpos], save_loc)?)
.combine(vec_match(mid, &seq[lpos + left_sep.len()..rpos], save_loc)?)
.combine(vec_match(right, &seq[rpos + right_sep.len()..], save_loc)?),
)
})
.max_by(|a, b| {
for key in key_order {
let alen = a.ph_len(key).expect("key_order references scalar or missing");
let blen = b.ph_len(key).expect("key_order references scalar or missing");
match alen.cmp(&blen) {
Ordering::Equal => (),
any => return any,
}
}
Ordering::Equal
});
if let Some(state) = best_candidate {
return Some(state);
}
}
None
},
}
}