Sync commit

This commit is contained in:
2022-12-08 17:52:57 +00:00
parent 3557107248
commit a500f8b87a
11 changed files with 338 additions and 275 deletions

View File

@@ -1,67 +1,79 @@
use mappable_rc::Mrc;
use crate::utils::collect_to_mrc;
use super::super::representations::typed::{Clause, Expr};
pub fn apply_lambda(body: Mrc<Expr>, arg: Mrc<Expr>) -> Mrc<Expr> {
apply_lambda_expr_rec(Mrc::clone(&body), arg, 0)
pub fn apply_lambda(id: u64, value: Mrc<Expr>, body: Mrc<Expr>) -> Mrc<Expr> {
apply_lambda_expr_rec(id, value, Mrc::clone(&body))
.unwrap_or(body)
}
fn apply_lambda_expr_rec(
item: Mrc<Expr>, arg: Mrc<Expr>, depth: usize
id: u64, value: Mrc<Expr>, expr: Mrc<Expr>
) -> Option<Mrc<Expr>> {
let Expr(clause, typ) = item.as_ref();
apply_lambda_clause_rec(clause.clone(), arg, depth)
.map(|c| Mrc::new(Expr(c, Mrc::clone(typ))))
let Expr(clause, typ) = expr.as_ref();
match clause {
Clause::Argument(arg_id) if *arg_id == id => {
let full_typ = collect_to_mrc(
value.1.iter()
.chain(typ.iter())
.cloned()
);
Some(Mrc::new(Expr(value.0.to_owned(), full_typ)))
}
cl => {
apply_lambda_clause_rec(id, value, clause.clone())
.map(|c| Mrc::new(Expr(c, Mrc::clone(typ))))
}
}
}
fn apply_lambda_clause_rec(
clause: Clause, arg: Mrc<Expr>, depth: usize
id: u64, value: Mrc<Expr>, clause: Clause
) -> Option<Clause> {
match clause {
// Only element actually manipulated
Clause::Argument(d) => {
if d == depth {Some(arg.0.clone())} // Resolve reference
// Application eliminates a layer of indirection
else if d > depth {Some(Clause::Argument(d - 1))}
else {None} // Undisturbed ancestry
}
Clause::Argument(id) => panic!(
"apply_lambda_expr_rec is supposed to eliminate this case"),
// Traverse, yield Some if either had changed.
Clause::Apply(f, x) => apply_lambda__traverse_call(arg, depth, f, x, Clause::Apply),
Clause::Explicit(f, t) => apply_lambda__traverse_call(arg, depth, f, t, Clause::Explicit),
Clause::Lambda(t, b) => apply_lambda__traverse_param(arg, depth, t, b, Clause::Lambda),
Clause::Auto(t, b) => apply_lambda__traverse_param(arg, depth, t, b, Clause::Auto),
Clause::Apply(f, x) => {
let new_f = apply_lambda_expr_rec(
id, Mrc::clone(&value), Mrc::clone(&f)
);
let new_x = apply_lambda_expr_rec(
id, value, Mrc::clone(&x)
);
match (new_f, new_x) { // Mind the shadows
(None, None) => None,
(None, Some(x)) => Some(Clause::Apply(f, x)),
(Some(f), None) => Some(Clause::Apply(f, x)),
(Some(f), Some(x)) => Some(Clause::Apply(f, x))
}
},
Clause::Lambda(own_id, t, b) => apply_lambda__traverse_param(id, value, own_id, t, b, Clause::Lambda),
Clause::Auto(own_id, t, b) => apply_lambda__traverse_param(id, value, own_id, t, b, Clause::Auto),
// Leaf nodes
Clause::Atom(_) | Clause::ExternFn(_) | Clause::Literal(_) => None
}
}
fn apply_lambda__traverse_call(
arg: Mrc<Expr>, depth: usize, f: Mrc<Expr>, x: Mrc<Expr>,
wrap: impl Fn(Mrc<Expr>, Mrc<Expr>) -> Clause
) -> Option<Clause> {
let new_f = apply_lambda_expr_rec(Mrc::clone(&f), Mrc::clone(&arg), depth);
let new_x = apply_lambda_expr_rec(Mrc::clone(&x), arg, depth);
match (new_f, new_x) {
(None, None) => None,
(None, Some(x)) => Some(wrap(f, x)),
(Some(f), None) => Some(wrap(f, x)),
(Some(f), Some(x)) => Some(wrap(f, x))
}
}
fn apply_lambda__traverse_param(
arg: Mrc<Expr>, depth: usize, t: Option<Mrc<Clause>>, b: Mrc<Expr>,
wrap: impl Fn(Option<Mrc<Clause>>, Mrc<Expr>) -> Clause
id: u64, value: Mrc<Expr>,
own_id: u64, t: Option<Mrc<Clause>>, b: Mrc<Expr>,
wrap: impl Fn(u64, Option<Mrc<Clause>>, Mrc<Expr>) -> Clause
) -> Option<Clause> {
let new_t = t.as_ref().and_then(|t| {
apply_lambda_clause_rec(t.as_ref().clone(), Mrc::clone(&arg), depth)
});
let new_b = apply_lambda_expr_rec(Mrc::clone(&b), arg, depth + 1);
match (new_t, new_b) {
let new_t = t.and_then(|t| apply_lambda_clause_rec(
id, Mrc::clone(&value), t.as_ref().clone()
));
// Respect shadowing
let new_b = if own_id == id {None} else {
apply_lambda_expr_rec(id, value, Mrc::clone(&b))
};
match (new_t, new_b) { // Mind the shadows
(None, None) => None,
(None, Some(b)) => Some(Clause::Lambda(t, b)),
(Some(t), None) => Some(Clause::Lambda(Some(Mrc::new(t)), b)),
(Some(t), Some(b)) => Some(Clause::Lambda(Some(Mrc::new(t)), b))
(None, Some(b)) => Some(wrap(own_id, t, b)),
(Some(t), None) => Some(wrap(own_id, Some(Mrc::new(t)), b)),
(Some(t), Some(b)) => Some(wrap(own_id, Some(Mrc::new(t)), b))
}
}

View File

@@ -1,33 +1,51 @@
use std::hash::{Hasher, Hash};
use itertools::Itertools;
use crate::utils::ProtoMap;
use super::super::representations::typed::{Clause, Expr};
use super::super::utils::Stackframe;
const PARAMETRICS_INLINE_COUNT:usize = 5;
type Parametrics<'a> = ProtoMap<'a, u64, bool, PARAMETRICS_INLINE_COUNT>;
/// Hash the parts of an expression that are required to be equal for syntactic equality.
pub fn partial_hash_rec<H: Hasher>(Expr(clause, _): &Expr, state: &mut H, is_auto: Stackframe<bool>) {
pub fn partial_hash_rec<H: Hasher>(
Expr(clause, _): &Expr, state: &mut H,
mut parametrics: Parametrics
) {
match clause {
// Skip autos and explicits
Clause::Auto(_, body) => partial_hash_rec(body, state, is_auto.push(true)),
Clause::Explicit(f, _) => partial_hash_rec(f, state, is_auto),
// Skip autos
Clause::Auto(id, _, body) => {
parametrics.set(id, true);
partial_hash_rec(body, state, parametrics)
}
// Annotate everything else with a prefix
// - Recurse into the tree of lambdas and calls - classic lambda calc
Clause::Lambda(_, body) => {
Clause::Lambda(id, _, body) => {
state.write_u8(0);
partial_hash_rec(body, state, is_auto.push(false))
parametrics.set(id, false);
partial_hash_rec(body, state, parametrics)
}
Clause::Apply(f, x) => {
state.write_u8(1);
partial_hash_rec(f, state, is_auto);
partial_hash_rec(x, state, is_auto);
partial_hash_rec(f, state, parametrics.clone());
partial_hash_rec(x, state, parametrics);
}
// - Only recognize the depth of an argument if it refers to a non-auto parameter
Clause::Argument(depth) => {
Clause::Argument(own_id) => {
let (pos, is_auto) = parametrics.iter()
.filter_map(|(id, is_auto)| is_auto.map(|is_auto| (*id, is_auto)))
.find_position(|(id, is_auto)| id == own_id)
.map(|(pos, (_, is_auto))| (pos, is_auto))
.unwrap_or((usize::MAX, false));
// If the argument references an auto, acknowledge its existence
if *is_auto.iter().nth(*depth).unwrap_or(&false) {
if is_auto {
state.write_u8(2)
} else {
state.write_u8(3);
state.write_usize(*depth)
state.write_usize(pos)
}
}
// - Hash leaves like normal

View File

@@ -10,48 +10,38 @@ use super::super::representations::typed::{Clause, Expr};
/// Call the function with the first Expression that isn't an Auto,
/// wrap all elements in the returned iterator back in the original sequence of Autos.
pub fn skip_autos<'a,
F: 'a + FnOnce(Mrc<Expr>, usize) -> I,
F: 'a + FnOnce(Mrc<Expr>) -> I,
I: Iterator<Item = Mrc<Expr>> + 'static
>(
depth: usize, expr: Mrc<Expr>, function: F
expr: Mrc<Expr>, function: F
) -> BoxedIter<'static, Mrc<Expr>> {
match expr.as_ref() {
Expr(Clause::Auto(arg, body), typ) => {
return Box::new(skip_autos(depth + 1, Mrc::clone(body), function).map({
let arg = arg.as_ref().map(Mrc::clone);
let typ = Mrc::clone(typ);
move |body| {
Mrc::new(Expr(Clause::Auto(
arg.as_ref().map(Mrc::clone),
body
), Mrc::clone(&typ)))
}
})) as BoxedIter<'static, Mrc<Expr>>
}
Expr(Clause::Explicit(expr, targ), typ) => {
return Box::new(skip_autos(depth, Mrc::clone(expr), function).map({
let (targ, typ) = (Mrc::clone(targ), Mrc::clone(typ));
move |expr| {
Mrc::new(Expr(Clause::Explicit(expr, Mrc::clone(&targ)), Mrc::clone(&typ)))
}
})) as BoxedIter<'static, Mrc<Expr>>
}
_ => ()
if let Expr(Clause::Auto(id, arg, body), typ) = expr.as_ref() {
return Box::new(skip_autos(Mrc::clone(body), function).map({
let arg = arg.as_ref().map(Mrc::clone);
let typ = Mrc::clone(typ);
move |body| {
Mrc::new(Expr(Clause::Auto(
*id,
arg.as_ref().map(Mrc::clone),
body
), Mrc::clone(&typ)))
}
})) as BoxedIter<'static, Mrc<Expr>>
}
Box::new(function(expr, depth))
Box::new(function(expr))
}
/// Produces an iterator of every expression that can be produced from this one through B-reduction.
fn direct_reductions(ex: Mrc<Expr>) -> impl Iterator<Item = Mrc<Expr>> {
skip_autos(0, ex, |mexpr, _| {
skip_autos(ex, |mexpr| {
let Expr(clause, typ_ref) = mexpr.as_ref();
match clause {
Clause::Apply(f, x) => box_chain!(
skip_autos(0, Mrc::clone(f), |mexpr, _| {
skip_autos(Mrc::clone(f), |mexpr| {
let Expr(f, _) = mexpr.as_ref();
match f {
Clause::Lambda(_, body) => box_once(
apply_lambda(Mrc::clone(body), Mrc::clone(x))
Clause::Lambda(id, _, body) => box_once(
apply_lambda(*id, Mrc::clone(x), Mrc::clone(body))
),
Clause::ExternFn(xfn) => {
let Expr(xval, xtyp) = x.as_ref();
@@ -63,8 +53,7 @@ fn direct_reductions(ex: Mrc<Expr>) -> impl Iterator<Item = Mrc<Expr>> {
Clause::Atom(..) | Clause::Argument(..) | Clause::Apply(..) => box_empty(),
Clause::Literal(lit) =>
panic!("Literal expression {lit:?} can't be applied as function"),
Clause::Auto(..) | Clause::Explicit(..) =>
unreachable!("skip_autos should have filtered these"),
Clause::Auto(..) => unreachable!("skip_autos should have filtered this"),
}
}),
direct_reductions(Mrc::clone(f)).map({
@@ -84,18 +73,24 @@ fn direct_reductions(ex: Mrc<Expr>) -> impl Iterator<Item = Mrc<Expr>> {
), Mrc::clone(&typ)))
})
),
Clause::Lambda(argt, body) => Box::new(direct_reductions(Mrc::clone(body)).map({
Clause::Lambda(id, argt, body) => {
let id = *id;
let typ = Mrc::clone(typ_ref);
let argt = argt.as_ref().map(Mrc::clone);
move |body| Mrc::new(Expr(Clause::Lambda(
argt.as_ref().map(Mrc::clone),
body
), Mrc::clone(&typ)))
})),
let body = Mrc::clone(body);
let body_reductions = direct_reductions(body)
.map(move |body| {
let argt = argt.as_ref().map(Mrc::clone);
Mrc::new(Expr(
Clause::Lambda(id, argt, body),
Mrc::clone(&typ)
))
});
Box::new(body_reductions)
},
Clause::Literal(..) | Clause::ExternFn(..) | Clause::Atom(..) | Clause::Argument(..) =>
box_empty(),
Clause::Auto(..) | Clause::Explicit(..) =>
unreachable!("skip_autos should have filtered these"),
Clause::Auto(..) => unreachable!("skip_autos should have filtered this"),
}
})
}

View File

@@ -1,110 +1,85 @@
use std::collections::HashMap;
use std::hash::{Hasher, Hash};
use std::iter;
use mappable_rc::Mrc;
use crate::utils::ProtoMap;
use crate::utils::{ProtoMap, Side};
use super::super::representations::typed::{Clause, Expr};
use super::super::utils::Stackframe;
pub fn swap<T, U>((t, u): (T, U)) -> (U, T) { (u, t) }
// @ @ (0, (foo 1)) ~ @ (0, 0)
// TODO:
// - get rid of leftovers from Explicit
// - adapt to new index-based system
// =@= =&= =%= =#= =$= =?= =!= =/=
// <@> <&> <%> <#> <$> <?> <!> </>
// |@| |&| |%| |#| |$| |?| |!| |/|
// {@} {&} {%} {#} {$} {?} {!} {/}
// (@) (&) (%) (#) ($) (?) (!) (/)
// [@] [&] [%] [#] [$] [?] [!] [/]
/// The context associates a given variable (by absolute index) on a given side to
/// an expression on the opposite side rooted at the specified depth.
/// The root depths are used to translate betwee de Brujin arguments and absolute indices.
struct Context(HashMap<u64, Mrc<Expr>>);
impl Context {
fn set(&mut self, id: u64, value: Mrc<Expr>) {
// If already defined, then it must be an argument
if let Some(value) = self.0.get(&id) {
if let Clause::Argument(opposite_up) ex.0
}
}
}
const IS_AUTO_INLINE:usize = 5;
// All data to be forwarded during recursion about one half of a unification task
#[derive(Clone)]
struct UnifHalfTask<'a> {
/// The expression to be unified
expr: &'a Expr,
/// Auto parameters with their values from the opposite side
ctx: &'a ProtoMap<'a, usize, Mrc<Expr>>,
/// Stores whether a given relative upreference is auto or lambda
is_auto: Option<Stackframe<'a, bool>>,
/// Metastack of explicit arguments not yet resolved. An explicit will always exactly pair with
/// the first auto below it. Disjoint autos always bubble with a left-to-right precedence.
explicits: Option<Stackframe<'a, Mrc<Expr>>>
/// Stores whether a given uid is auto or lambda
is_auto: ProtoMap<'a, usize, bool, IS_AUTO_INLINE>
}
impl<'a> UnifHalfTask<'a> {
fn push_auto(&self, body: &Expr) -> (Self, bool) {
if let Some(Stackframe{ prev, .. }) = self.explicits {(
Self{
expr: body,
is_auto: Stackframe::opush(&self.is_auto, false),
explicits: prev.cloned(),
..*self
},
true
)} else {(
Self{
expr: body,
is_auto: Stackframe::opush(&self.is_auto, true),
..*self
},
false
)}
fn push_auto(&mut self, body: &Expr, key: usize) {
self.expr = body;
self.is_auto.set(&key, true);
}
fn push_lambda(&self, body: &Expr) -> Self {Self{
expr: body,
is_auto: Stackframe::opush(&self.is_auto, false),
..*self
}}
fn push_explicit(&self, subexpr: &Expr, arg: Mrc<Expr>) -> Self {Self{
expr: subexpr,
explicits: Stackframe::opush(&self.explicits, arg),
..*self
}}
fn push_expr(&self, f: &Expr) -> Self {Self{
expr: f,
..*self
}}
}
#[derive(Default)]
struct UnifResult {
/// Collected identities for the given side
context: HashMap<usize, Mrc<Expr>>,
/// Number of explicits to be eliminated from task before forwarding to the next branch
usedExplicits: usize,
}
impl UnifResult {
fn useExplicit(self) -> Self{Self{
usedExplicits: self.usedExplicits + 1,
context: self.context.clone()
}}
fn dropUsedExplicits(&mut self, task: &mut UnifHalfTask) {
task.explicits = task.explicits.map(|s| {
s.pop(self.usedExplicits).expect("More explicits used than provided")
}).cloned();
self.usedExplicits = 0;
fn push_lambda(&mut self, body: &Expr, key: usize) {
self.expr = body;
self.is_auto.set(&key, false);
}
}
type Ctx = HashMap<usize, Mrc<Expr>>;
/// Ascertain syntactic equality. Syntactic equality means that
/// - lambda elements are verbatim equal
/// - auto constraints are pairwise syntactically equal after sorting
///
/// Context associates variables with subtrees resolved on the opposite side
pub fn unify_syntax_rec( // the stacks store true for autos, false for lambdas
ctx: &mut HashMap<(Side, usize), (usize, Mrc<Expr>)>,
ltask@UnifHalfTask{ expr: lexpr@Expr(lclause, _), .. }: UnifHalfTask,
rtask@UnifHalfTask{ expr: rexpr@Expr(rclause, _), .. }: UnifHalfTask
) -> Option<(UnifResult, UnifResult)> {
// Ensure that ex1 is a value-level construct
match lclause {
Clause::Auto(_, body) => {
Clause::Auto(id, _, body) => {
let res = unify_syntax_rec(ltask.push_auto(body).0, rtask);
return if ltask.explicits.is_some() {
res.map(|(r1, r2)| (r1.useExplicit(), r2))
} else {res}
}
Clause::Explicit(subexpr, arg) => {
let new_ltask = ltask.push_explicit(subexpr, Mrc::clone(arg));
return unify_syntax_rec(new_ltask, rtask)
}
_ => ()
};
// Reduce ex2's auto handling to ex1's. In the optimizer we trust

View File

@@ -48,17 +48,17 @@ fn initial_tree() -> Mrc<[Expr]> {
#[allow(unused)]
fn typed_notation_debug() {
let true_ex = t::Clause::Auto(None,
t::Clause::Lambda(Some(Mrc::new(t::Clause::Argument(0))),
t::Clause::Lambda(Some(Mrc::new(t::Clause::Argument(1))),
t::Clause::Argument(1).wrap_t(t::Clause::Argument(2))
let true_ex = t::Clause::Auto(0, None,
t::Clause::Lambda(1, Some(Mrc::new(t::Clause::Argument(0))),
t::Clause::Lambda(2, Some(Mrc::new(t::Clause::Argument(0))),
t::Clause::Argument(1).wrap_t(t::Clause::Argument(0))
).wrap()
).wrap()
).wrap();
let false_ex = t::Clause::Auto(None,
t::Clause::Lambda(Some(Mrc::new(t::Clause::Argument(0))),
t::Clause::Lambda(Some(Mrc::new(t::Clause::Argument(1))),
t::Clause::Argument(0).wrap_t(t::Clause::Argument(2))
let false_ex = t::Clause::Auto(0, None,
t::Clause::Lambda(1, Some(Mrc::new(t::Clause::Argument(0))),
t::Clause::Lambda(2, Some(Mrc::new(t::Clause::Argument(0))),
t::Clause::Argument(2).wrap_t(t::Clause::Argument(0))
).wrap()
).wrap()
).wrap();

View File

@@ -1,6 +1,6 @@
use mappable_rc::Mrc;
use crate::utils::{Stackframe, to_mrc_slice, mrc_empty_slice};
use crate::utils::{Stackframe, to_mrc_slice, mrc_empty_slice, ProtoMap};
use super::{ast, typed};
@@ -33,103 +33,151 @@ pub enum Error {
/// Try to convert an expression from AST format to typed lambda
pub fn expr(expr: &ast::Expr) -> Result<typed::Expr, Error> {
expr_rec(expr, Stackframe::new(None))
Ok(expr_rec(expr, ProtoMap::new(), &mut 0, None)?.0)
}
/// Try and convert a single clause from AST format to typed lambda
pub fn clause(clause: &ast::Clause) -> Result<typed::Clause, Error> {
clause_rec(clause, Stackframe::new(None))
Ok(clause_rec(clause, ProtoMap::new(), &mut 0, None)?.0)
}
/// Try and convert a sequence of expressions from AST format to typed lambda
pub fn exprv(exprv: &[ast::Expr]) -> Result<typed::Expr, Error> {
exprv_rec(exprv, Stackframe::new(None))
Ok(exprv_rec(exprv, ProtoMap::new(), &mut 0, None)?.0)
}
fn apply_rec(f: typed::Expr, x: &ast::Expr, names: Stackframe<Option<&str>>)
-> Result<typed::Clause, Error> {
if let ast::Expr(ast::Clause::Explicit(inner), empty_slice) = x {
const NAMES_INLINE_COUNT:usize = 3;
/// Recursive state of [exprv]
fn exprv_rec(
v: &[ast::Expr],
names: ProtoMap<&str, u64, NAMES_INLINE_COUNT>,
next_id: &mut u64,
explicits: Option<&Stackframe<Mrc<typed::Expr>>>,
) -> Result<(typed::Expr, usize), Error> {
let (last, rest) = v.split_last().ok_or(Error::EmptyS)?;
if rest.len() == 0 {return expr_rec(&v[0], names, next_id, explicits)}
if let ast::Expr(ast::Clause::Explicit(inner), empty_slice) = last {
assert!(empty_slice.len() == 0,
"It is assumed that Explicit nodes can never have type annotations as the \
wrapped expression node matches all trailing colons."
);
let x = expr_rec(inner.as_ref(), names)?;
Ok(typed::Clause::Explicit(Mrc::new(f), Mrc::new(x)))
let (x, _) = expr_rec(inner.as_ref(), names, next_id, None)?;
let new_explicits = Some(&Stackframe::opush(explicits, Mrc::new(x)));
let (body, used_expls) = exprv_rec(rest, names, next_id, new_explicits)?;
Ok((body, used_expls.saturating_sub(1)))
} else {
let x = expr_rec(x, names)?;
Ok(typed::Clause::Apply(Mrc::new(f), Mrc::new(x)))
let (f, f_used_expls) = exprv_rec(rest, names, next_id, explicits)?;
let x_explicits = Stackframe::opop(explicits, f_used_expls);
let (x, x_used_expls) = expr_rec(last, names, next_id, x_explicits)?;
Ok((typed::Expr(
typed::Clause::Apply(Mrc::new(f), Mrc::new(x)),
mrc_empty_slice()
), x_used_expls + f_used_expls))
}
}
/// Recursive state of [exprv]
fn exprv_rec(v: &[ast::Expr], names: Stackframe<Option<&str>>) -> Result<typed::Expr, Error> {
if v.len() == 0 {return Err(Error::EmptyS)}
if v.len() == 1 {return expr_rec(&v[0], names)}
let (head, tail) = v.split_at(2);
let f = expr_rec(&head[0], names)?;
let x = &head[1];
// TODO this could probably be normalized, it's a third copy.
tail.iter().fold(
apply_rec(f, x, names),
|acc, e| apply_rec(
typed::Expr(acc?, mrc_empty_slice()),
e,
names
)
).map(|cls| typed::Expr(cls, mrc_empty_slice()))
}
/// Recursive state of [expr]
fn expr_rec(ast::Expr(val, typ): &ast::Expr, names: Stackframe<Option<&str>>)
-> Result<typed::Expr, Error> {
fn expr_rec(
ast::Expr(val, typ): &ast::Expr,
names: ProtoMap<&str, u64, NAMES_INLINE_COUNT>,
next_id: &mut u64,
explicits: Option<&Stackframe<Mrc<typed::Expr>>> // known explicit values
) -> Result<(typed::Expr, usize), Error> { // (output, used_explicits)
let typ: Vec<typed::Clause> = typ.iter()
.map(|c| clause_rec(c, names))
.map(|c| Ok(clause_rec(c, names, next_id, None)?.0))
.collect::<Result<_, _>>()?;
if let ast::Clause::S(paren, body) = val {
if *paren != '(' {return Err(Error::BadGroup(*paren))}
let typed::Expr(inner, inner_t) = exprv_rec(body.as_ref(), names)?;
let (typed::Expr(inner, inner_t), used_expls) = exprv_rec(
body.as_ref(), names, next_id, explicits
)?;
let new_t = if typ.len() == 0 { inner_t } else {
to_mrc_slice(if inner_t.len() == 0 { typ } else {
inner_t.iter().chain(typ.iter()).cloned().collect()
})
};
Ok(typed::Expr(inner, new_t))
Ok((typed::Expr(inner, new_t), used_expls))
} else {
Ok(typed::Expr(clause_rec(&val, names)?, to_mrc_slice(typ)))
let (cls, used_expls) = clause_rec(&val, names, next_id, explicits)?;
Ok((typed::Expr(cls, to_mrc_slice(typ)), used_expls))
}
}
/// Recursive state of [clause]
fn clause_rec(cls: &ast::Clause, names: Stackframe<Option<&str>>)
-> Result<typed::Clause, Error> {
match cls {
ast::Clause::ExternFn(e) => Ok(typed::Clause::ExternFn(e.clone())),
ast::Clause::Atom(a) => Ok(typed::Clause::Atom(a.clone())),
ast::Clause::Auto(no, t, b) => Ok(typed::Clause::Auto(
if t.len() == 0 {None} else {
let typed::Expr(c, t) = exprv_rec(t.as_ref(), names)?;
fn clause_rec(
cls: &ast::Clause,
names: ProtoMap<&str, u64, NAMES_INLINE_COUNT>,
next_id: &mut u64,
mut explicits: Option<&Stackframe<Mrc<typed::Expr>>>
) -> Result<(typed::Clause, usize), Error> {
match cls { // (\t:(@T. Pair T T). t \left.\right. left) @number -- this will fail
ast::Clause::ExternFn(e) => Ok((typed::Clause::ExternFn(e.clone()), 0)),
ast::Clause::Atom(a) => Ok((typed::Clause::Atom(a.clone()), 0)),
ast::Clause::Auto(no, t, b) => {
// Allocate id
let id = *next_id;
*next_id += 1;
// Pop an explicit if available
let (value, rest_explicits) = explicits.map(
|Stackframe{ prev, item, .. }| {
(Some(item), *prev)
}
).unwrap_or_default();
explicits = rest_explicits;
// Convert the type
let typ = if t.len() == 0 {None} else {
let (typed::Expr(c, t), _) = exprv_rec(
t.as_ref(), names, next_id, None
)?;
if t.len() > 0 {return Err(Error::ExplicitBottomKind)}
else {Some(Mrc::new(c))}
},
Mrc::new(exprv_rec(b.as_ref(), names.push(no.as_ref().map(|n| &**n)))?)
)),
ast::Clause::Lambda(n, t, b) => Ok(typed::Clause::Lambda(
if t.len() == 0 {None} else {
let typed::Expr(c, t) = exprv_rec(t.as_ref(), names)?;
};
// Traverse body with extended context
if let Some(name) = no {names.set(&&**name, id)}
let (body, used_expls) = exprv_rec(
b.as_ref(), names, next_id, explicits
)?;
// Produce a binding instead of an auto if explicit was available
if let Some(known_value) = value {
Ok((typed::Clause::Apply(
typed::Clause::Lambda(id, typ, Mrc::new(body)).wrap(),
Mrc::clone(known_value)
), used_expls + 1))
} else {
Ok((typed::Clause::Auto(id, typ, Mrc::new(body)), 0))
}
}
ast::Clause::Lambda(n, t, b) => {
// Allocate id
let id = *next_id;
*next_id += 1;
// Convert the type
let typ = if t.len() == 0 {None} else {
let (typed::Expr(c, t), _) = exprv_rec(
t.as_ref(), names, next_id, None
)?;
if t.len() > 0 {return Err(Error::ExplicitBottomKind)}
else {Some(Mrc::new(c))}
},
Mrc::new(exprv_rec(b.as_ref(), names.push(Some(&**n)))?)
)),
ast::Clause::Literal(l) => Ok(typed::Clause::Literal(l.clone())),
ast::Clause::Name { local: Some(arg), .. } => Ok(typed::Clause::Argument(
names.iter().position(|no| no == &Some(&**arg))
.ok_or_else(|| Error::Unbound(arg.clone()))?
)),
};
names.set(&&**n, id);
let (body, used_expls) = exprv_rec(
b.as_ref(), names, next_id, explicits
)?;
Ok((typed::Clause::Lambda(id, typ, Mrc::new(body)), used_expls))
}
ast::Clause::Literal(l) => Ok((typed::Clause::Literal(l.clone()), 0)),
ast::Clause::Name { local: Some(arg), .. } => {
let uid = names.get(&&**arg)
.ok_or_else(|| Error::Unbound(arg.clone()))?;
Ok((typed::Clause::Argument(*uid), 0))
}
ast::Clause::S(paren, entries) => {
if *paren != '(' {return Err(Error::BadGroup(*paren))}
let typed::Expr(val, typ) = exprv_rec(entries.as_ref(), names)?;
if typ.len() == 0 {Ok(val)}
let (typed::Expr(val, typ), used_expls) = exprv_rec(
entries.as_ref(), names, next_id, explicits
)?;
if typ.len() == 0 {Ok((val, used_expls))}
else {Err(Error::ExprToClause(typed::Expr(val, typ)))}
},
ast::Clause::Name { local: None, .. } => Err(Error::Symbol),

View File

@@ -16,16 +16,16 @@ struct Wrap(bool, bool);
#[derive(PartialEq, Eq, Hash)]
pub struct Expr(pub Clause, pub Mrc<[Clause]>);
impl Expr {
fn deep_fmt(&self, f: &mut std::fmt::Formatter<'_>, depth: usize, tr: Wrap) -> std::fmt::Result {
fn deep_fmt(&self, f: &mut std::fmt::Formatter<'_>, tr: Wrap) -> std::fmt::Result {
let Expr(val, typ) = self;
if typ.len() > 0 {
val.deep_fmt(f, depth, Wrap(true, true))?;
val.deep_fmt(f, Wrap(true, true))?;
for typ in typ.as_ref() {
f.write_char(':')?;
typ.deep_fmt(f, depth, Wrap(true, true))?;
typ.deep_fmt(f, Wrap(true, true))?;
}
} else {
val.deep_fmt(f, depth, tr)?;
val.deep_fmt(f, tr)?;
}
Ok(())
}
@@ -39,7 +39,7 @@ impl Clone for Expr {
impl Debug for Expr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.deep_fmt(f, 0, Wrap(false, false))
self.deep_fmt(f, Wrap(false, false))
}
}
@@ -47,11 +47,9 @@ impl Debug for Expr {
pub enum Clause {
Literal(Literal),
Apply(Mrc<Expr>, Mrc<Expr>),
/// Explicit specification of an Auto value
Explicit(Mrc<Expr>, Mrc<Expr>),
Lambda(Option<Mrc<Clause>>, Mrc<Expr>),
Auto(Option<Mrc<Clause>>, Mrc<Expr>),
Argument(usize),
Lambda(u64, Option<Mrc<Clause>>, Mrc<Expr>),
Auto(u64, Option<Mrc<Clause>>, Mrc<Expr>),
Argument(u64),
ExternFn(ExternFn),
Atom(Atom)
}
@@ -60,48 +58,40 @@ const ARGNAME_CHARSET: &str = "abcdefghijklmnopqrstuvwxyz";
fn parametric_fmt(
f: &mut std::fmt::Formatter<'_>,
prefix: &str, argtyp: Option<Mrc<Clause>>, body: Mrc<Expr>, depth: usize, wrap_right: bool
prefix: &str, argtyp: Option<Mrc<Clause>>, body: Mrc<Expr>, uid: u64, wrap_right: bool
) -> std::fmt::Result {
if wrap_right { f.write_char('(')?; }
f.write_str(prefix)?;
f.write_str(&string_from_charset(depth, ARGNAME_CHARSET))?;
f.write_str(&string_from_charset(uid, ARGNAME_CHARSET))?;
if let Some(typ) = argtyp {
f.write_str(":")?;
typ.deep_fmt(f, depth, Wrap(false, false))?;
typ.deep_fmt(f, Wrap(false, false))?;
}
f.write_str(".")?;
body.deep_fmt(f, depth + 1, Wrap(false, false))?;
body.deep_fmt(f, Wrap(false, false))?;
if wrap_right { f.write_char(')')?; }
Ok(())
}
impl Clause {
fn deep_fmt(&self, f: &mut std::fmt::Formatter<'_>, depth: usize, Wrap(wl, wr): Wrap)
fn deep_fmt(&self, f: &mut std::fmt::Formatter<'_>, Wrap(wl, wr): Wrap)
-> std::fmt::Result {
match self {
Self::Literal(arg0) => write!(f, "{arg0:?}"),
Self::ExternFn(nc) => write!(f, "{nc:?}"),
Self::Atom(a) => write!(f, "{a:?}"),
Self::Lambda(argtyp, body) => parametric_fmt(f,
"\\", argtyp.as_ref().map(Mrc::clone), Mrc::clone(body), depth, wr
Self::Lambda(uid, argtyp, body) => parametric_fmt(f,
"\\", argtyp.as_ref().map(Mrc::clone), Mrc::clone(body), *uid, wr
),
Self::Auto(argtyp, body) => parametric_fmt(f,
"@", argtyp.as_ref().map(Mrc::clone), Mrc::clone(body), depth, wr
Self::Auto(uid, argtyp, body) => parametric_fmt(f,
"@", argtyp.as_ref().map(Mrc::clone), Mrc::clone(body), *uid, wr
),
Self::Argument(up) => f.write_str(&string_from_charset(depth - up - 1, ARGNAME_CHARSET)),
Self::Explicit(expr, param) => {
if wl { f.write_char('(')?; }
expr.deep_fmt(f, depth, Wrap(false, true))?;
f.write_str(" @")?;
param.deep_fmt(f, depth, Wrap(true, wr && !wl))?;
if wl { f.write_char(')')?; }
Ok(())
}
Self::Argument(uid) => f.write_str(&string_from_charset(*uid, ARGNAME_CHARSET)),
Self::Apply(func, x) => {
if wl { f.write_char('(')?; }
func.deep_fmt(f, depth, Wrap(false, true) )?;
func.deep_fmt(f, Wrap(false, true) )?;
f.write_char(' ')?;
x.deep_fmt(f, depth, Wrap(true, wr && !wl) )?;
x.deep_fmt(f, Wrap(true, wr && !wl) )?;
if wl { f.write_char(')')?; }
Ok(())
}
@@ -114,13 +104,12 @@ impl Clause {
impl Clone for Clause {
fn clone(&self) -> Self {
match self {
Clause::Auto(t, b) => Clause::Auto(t.as_ref().map(Mrc::clone), Mrc::clone(b)),
Clause::Lambda(t, b) => Clause::Lambda(t.as_ref().map(Mrc::clone), Mrc::clone(b)),
Clause::Auto(uid,t, b) => Clause::Auto(*uid, t.as_ref().map(Mrc::clone), Mrc::clone(b)),
Clause::Lambda(uid, t, b) => Clause::Lambda(*uid, t.as_ref().map(Mrc::clone), Mrc::clone(b)),
Clause::Literal(l) => Clause::Literal(l.clone()),
Clause::ExternFn(nc) => Clause::ExternFn(nc.clone()),
Clause::Atom(a) => Clause::Atom(a.clone()),
Clause::Apply(f, x) => Clause::Apply(Mrc::clone(f), Mrc::clone(x)),
Clause::Explicit(f, x) => Clause::Explicit(Mrc::clone(f), Mrc::clone(x)),
Clause::Argument(lvl) => Clause::Argument(*lvl)
}
}
@@ -128,7 +117,7 @@ impl Clone for Clause {
impl Debug for Clause {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.deep_fmt(f, 0, Wrap(false, false))
self.deep_fmt(f, Wrap(false, false))
}
}

View File

@@ -118,7 +118,9 @@ impl<'a, K, V, const STACK_COUNT: usize> ProtoMap<'a, K, V, STACK_COUNT> {
}
}
impl<T, K, V> From<T> for ProtoMap<'_, K, V> where T: IntoIterator<Item = (K, V)> {
impl<T, K, V, const STACK_COUNT: usize>
From<T> for ProtoMap<'_, K, V, STACK_COUNT>
where T: IntoIterator<Item = (K, V)> {
fn from(value: T) -> Self {
Self {
entries: value.into_iter().map(|(k, v)| (k, Some(v))).collect(),
@@ -127,14 +129,17 @@ impl<T, K, V> From<T> for ProtoMap<'_, K, V> where T: IntoIterator<Item = (K, V)
}
}
impl<Q: ?Sized, K, V> Index<&Q> for ProtoMap<'_, K, V> where K: Borrow<Q>, Q: Eq {
impl<Q: ?Sized, K, V, const STACK_COUNT: usize>
Index<&Q> for ProtoMap<'_, K, V, STACK_COUNT>
where K: Borrow<Q>, Q: Eq {
type Output = V;
fn index(&self, index: &Q) -> &Self::Output {
self.get(index).expect("Index not found in map")
}
}
impl<K: Clone, V: Clone> Clone for ProtoMap<'_, K, V> {
impl<K: Clone, V: Clone, const STACK_COUNT: usize>
Clone for ProtoMap<'_, K, V, STACK_COUNT> {
fn clone(&self) -> Self {
Self {
entries: self.entries.clone(),
@@ -143,8 +148,9 @@ impl<K: Clone, V: Clone> Clone for ProtoMap<'_, K, V> {
}
}
impl<'a, K: 'a, V: 'a> Add<(K, V)> for &'a ProtoMap<'a, K, V> {
type Output = ProtoMap<'a, K, V>;
impl<'a, K: 'a, V: 'a, const STACK_COUNT: usize>
Add<(K, V)> for &'a ProtoMap<'a, K, V, STACK_COUNT> {
type Output = ProtoMap<'a, K, V, STACK_COUNT>;
fn add(self, rhs: (K, V)) -> Self::Output {
ProtoMap::from([rhs]).set_proto(self)
}

View File

@@ -1,14 +1,14 @@
fn string_from_charset_rec(val: usize, digits: &str) -> String {
let radix = digits.len();
fn string_from_charset_rec(val: u64, digits: &str) -> String {
let radix = digits.len() as u64;
let mut prefix = if val > radix {
string_from_charset_rec(val / radix, digits)
} else {String::new()};
prefix.push(digits.chars().nth(val - 1).unwrap_or_else(|| {
panic!("Overindexed digit set \"{}\" with {}", digits, val - 1)
}));
prefix.push(digits.chars().nth(val as usize - 1).unwrap_or_else(
|| panic!("Overindexed digit set \"{}\" with {}", digits, val - 1)
));
prefix
}
pub fn string_from_charset(val: usize, digits: &str) -> String {
pub fn string_from_charset(val: u64, digits: &str) -> String {
string_from_charset_rec(val + 1, digits)
}

View File

@@ -33,17 +33,21 @@ impl<'a, T: 'a> Stackframe<'a, T> {
len: self.len + 1
}
}
pub fn opush(prev: &Option<Self>, item: T) -> Option<Self> {
Some(Self {
pub fn opush(prev: Option<&Self>, item: T) -> Self {
Self {
item,
prev: prev.as_ref(),
prev,
len: prev.map_or(1, |s| s.len)
})
}
}
pub fn len(&self) -> usize { self.len }
pub fn pop(&self, count: usize) -> Option<&Self> {
if count == 0 {Some(self)}
else {self.prev.and_then(|prev| prev.pop(count - 1))}
else {self.prev.expect("Index out of range").pop(count - 1)}
}
pub fn opop(cur: Option<&Self>, count: usize) -> Option<&Self> {
if count == 0 {cur}
else {Self::opop(cur.expect("Index out of range").prev, count - 1)}
}
}