use std::cell::RefCell; use std::collections::VecDeque; use std::num::NonZeroU64; use std::rc::{Rc, Weak}; use std::{fmt, mem}; use async_std::sync::RwLock; use futures::FutureExt; use hashbrown::HashSet; use itertools::Itertools; use orchid_base::error::{OrcErrv, mk_errv}; use orchid_base::format::{FmtCtx, FmtCtxImpl, FmtUnit, Format, Variants, take_first}; use orchid_base::location::Pos; use orchid_base::macros::mtreev_fmt; use orchid_base::name::Sym; use orchid_base::tokens::Paren; use orchid_base::tree::{AtomRepr, indent}; use orchid_base::{match_mapping, tl_cache}; use substack::Substack; use crate::api; use crate::atom::AtomHand; use crate::ctx::Ctx; use crate::extension::Extension; use crate::macros::{MacTok, MacTree}; pub type ExprParseCtx = Extension; #[derive(Debug)] pub struct ExprData { pos: Pos, kind: RwLock, } #[derive(Clone, Debug)] pub struct Expr(Rc); impl Expr { pub fn pos(&self) -> Pos { self.0.pos.clone() } pub async fn try_into_owned_atom(self) -> Result { match Rc::try_unwrap(self.0) { Err(e) => Err(Self(e)), Ok(data) => match data.kind.into_inner() { ExprKind::Atom(a) => Ok(a), inner => Err(Self(Rc::new(ExprData { kind: inner.into(), pos: data.pos }))), }, } } pub async fn as_atom(&self) -> Option { if let ExprKind::Atom(a) = &*self.kind().read().await { Some(a.clone()) } else { None } } pub fn strong_count(&self) -> usize { Rc::strong_count(&self.0) } pub fn id(&self) -> api::ExprTicket { api::ExprTicket( NonZeroU64::new(self.0.as_ref() as *const ExprData as usize as u64) .expect("this is a ref, it cannot be null"), ) } pub async fn from_api(api: &api::Expression, ctx: &mut ExprParseCtx) -> Self { if let api::ExpressionKind::Slot(tk) = &api.kind { return ctx.exprs().get_expr(*tk).expect("Invalid slot"); } let pos = Pos::from_api(&api.location, &ctx.ctx().i).await; let kind = RwLock::new(ExprKind::from_api(&api.kind, pos.clone(), ctx).boxed_local().await); Self(Rc::new(ExprData { pos, kind })) } pub async fn to_api(&self) -> api::InspectedKind { use api::InspectedKind as K; match &*self.0.kind.read().await { ExprKind::Atom(a) => K::Atom(a.to_api().await), ExprKind::Bottom(b) => K::Bottom(b.to_api()), ExprKind::Identity(ex) => ex.to_api().boxed_local().await, _ => K::Opaque, } } pub fn kind(&self) -> &RwLock { &self.0.kind } } impl Format for Expr { async fn print<'a>(&'a self, c: &'a (impl FmtCtx + ?Sized + 'a)) -> FmtUnit { return print_expr(self, c, &mut HashSet::new()).await; } } async fn print_expr<'a>( expr: &'a Expr, c: &'a (impl FmtCtx + ?Sized + 'a), visited: &mut HashSet, ) -> FmtUnit { if visited.contains(&expr.id()) { return "CYCLIC_EXPR".to_string().into(); } visited.insert(expr.id()); print_exprkind(&*expr.kind().read().await, c, visited).boxed_local().await } #[derive(Clone, Debug)] pub enum ExprKind { Seq(Expr, Expr), Call(Expr, Expr), Atom(AtomHand), Arg, Lambda(Option, Expr), Bottom(OrcErrv), Identity(Expr), Const(Sym), /// Temporary expr kind assigned to a write guard to gain ownership of the /// current value during normalization. While this is in place, the guard must /// not be dropped. Missing, } impl ExprKind { pub async fn from_api(api: &api::ExpressionKind, pos: Pos, ctx: &mut ExprParseCtx) -> Self { match_mapping!(api, api::ExpressionKind => ExprKind { Lambda(id => PathSet::from_api(*id, api), b => Expr::from_api(b, ctx).await), Bottom(b => OrcErrv::from_api(b, &ctx.ctx().i).await), Call(f => Expr::from_api(f, ctx).await, x => Expr::from_api(x, ctx).await), Const(c => Sym::from_api(*c, &ctx.ctx().i).await), Seq(a => Expr::from_api(a, ctx).await, b => Expr::from_api(b, ctx).await), } { api::ExpressionKind::Arg(_) => ExprKind::Arg, api::ExpressionKind::NewAtom(a) => ExprKind::Atom(AtomHand::from_api( a, pos, &mut ctx.ctx().clone() ).await), api::ExpressionKind::Slot(_) => panic!("Handled in Expr"), }) } pub fn at(self, pos: Pos) -> Expr { Expr(Rc::new(ExprData { pos, kind: RwLock::new(self) })) } } impl Format for ExprKind { async fn print<'a>(&'a self, c: &'a (impl FmtCtx + ?Sized + 'a)) -> FmtUnit { print_exprkind(self, c, &mut HashSet::new()).await } } async fn print_exprkind<'a>( ek: &ExprKind, c: &'a (impl FmtCtx + ?Sized + 'a), visited: &mut HashSet, ) -> FmtUnit { match &ek { ExprKind::Arg => "Arg".to_string().into(), ExprKind::Missing => panic!("This variant is swapped into write guards, so a read can never see it"), ExprKind::Atom(a) => a.print(c).await, ExprKind::Bottom(e) if e.len() == 1 => format!("Bottom({e})").into(), ExprKind::Bottom(e) => format!("Bottom(\n\t{}\n)", indent(&e.to_string())).into(), ExprKind::Call(f, x) => tl_cache!(Rc: Rc::new(Variants::default() .unbounded("{0} {1l}") .bounded("({0} {1b})"))) .units([print_expr(f, c, visited).await, print_expr(x, c, visited).await]), ExprKind::Identity(id) => tl_cache!(Rc: Rc::new(Variants::default().bounded("{{{0}}}"))).units([print_expr( id, c, visited, ) .boxed_local() .await]), ExprKind::Const(c) => format!("{c}").into(), ExprKind::Lambda(None, body) => tl_cache!(Rc: Rc::new(Variants::default() .unbounded("\\.{0l}") .bounded("(\\.{0b})"))) .units([print_expr(body, c, visited).await]), ExprKind::Lambda(Some(path), body) => tl_cache!(Rc: Rc::new(Variants::default() .unbounded("\\{0b}. {1l}") .bounded("(\\{0b}. {1b})"))) .units([format!("{path}").into(), print_expr(body, c, visited).await]), ExprKind::Seq(l, r) => tl_cache!(Rc: Rc::new(Variants::default().bounded("[{0b}]{1l}"))) .units([print_expr(l, c, visited).await, print_expr(r, c, visited).await]), } } #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)] pub enum Step { Left, Right, } #[derive(Clone, Debug)] pub struct PathSet { /// The single steps through [super::nort::Clause::Apply] pub steps: Vec, /// if Some, it splits at a [super::nort::Clause::Apply]. If None, it ends in /// a [super::nort::Clause::LambdaArg] pub next: Option<(Box, Box)>, } impl PathSet { pub fn next(&self) -> Option<(&PathSet, &PathSet)> { self.next.as_ref().map(|(l, r)| (&**l, &**r)) } pub fn from_api(id: u64, api: &api::ExpressionKind) -> Option { use api::ExpressionKind as K; struct Suffix(VecDeque, Option<(Box, Box)>); fn seal(Suffix(steps, next): Suffix) -> PathSet { PathSet { steps: steps.into(), next } } fn after(step: Step, mut suf: Suffix) -> Suffix { suf.0.push_front(step); suf } return from_api_inner(id, api).map(seal); fn from_api_inner(id: u64, api: &api::ExpressionKind) -> Option { match &api { K::Arg(id2) => (id == *id2).then_some(Suffix(VecDeque::new(), None)), K::Bottom(_) | K::Const(_) | K::NewAtom(_) | K::Slot(_) => None, K::Lambda(_, b) => from_api_inner(id, &b.kind), K::Call(l, r) | K::Seq(l, r) => { match (from_api_inner(id, &l.kind), from_api_inner(id, &r.kind)) { (Some(a), Some(b)) => Some(Suffix(VecDeque::new(), Some((Box::new(seal(a)), Box::new(seal(b)))))), (Some(l), None) => Some(after(Step::Left, l)), (None, Some(r)) => Some(after(Step::Right, r)), (None, None) => None, } }, } } } } impl fmt::Display for PathSet { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fn print_step(step: Step) -> &'static str { if step == Step::Left { "l" } else { "r" } } let step_s = self.steps.iter().copied().map(print_step).join(""); match &self.next { Some((left, right)) => { if !step_s.is_empty() { write!(f, "{step_s}>")?; } write!(f, "({left}|{right})") }, None => write!(f, "{step_s}x"), } } } pub fn bot_expr(err: impl Into) -> Expr { let errv: OrcErrv = err.into(); let pos = errv.pos_iter().next().map_or(Pos::None, |ep| ep.position.clone()); ExprKind::Bottom(errv).at(pos) } pub struct WeakExpr(Weak); impl WeakExpr { pub fn upgrade(&self) -> Option { self.0.upgrade().map(Expr) } } #[derive(Clone)] pub enum SrcToExprStep<'a> { Left, Right, Lambda(Sym, &'a RefCell>), } pub async fn mtreev_to_expr( src: &[MacTree], stack: Substack<'_, SrcToExprStep<'_>>, ctx: &Ctx, ) -> ExprKind { let Some((x, f)) = src.split_last() else { panic!("Empty expression cannot be evaluated") }; let x_stack = if f.is_empty() { stack.clone() } else { stack.push(SrcToExprStep::Right) }; let x_kind = match &*x.tok { MacTok::Atom(a) => ExprKind::Atom(a.clone()), MacTok::Name(n) => 'name: { let mut steps = VecDeque::new(); for step in x_stack.iter() { match step { SrcToExprStep::Left => steps.push_front(Step::Left), SrcToExprStep::Right => steps.push_front(Step::Right), SrcToExprStep::Lambda(name, _) if name != n => continue, SrcToExprStep::Lambda(_, cell) => { let mut ps = cell.borrow_mut(); match &mut *ps { val @ None => *val = Some(PathSet { steps: steps.into(), next: None }), Some(val) => { let mut swap = PathSet { steps: Vec::new(), next: None }; mem::swap(&mut swap, val); *val = merge(swap, &Vec::from(steps)); fn merge(ps: PathSet, steps: &[Step]) -> PathSet { let diff_idx = ps.steps.iter().zip(steps).take_while(|(l, r)| l == r).count(); if diff_idx == ps.steps.len() { if diff_idx == steps.len() { match ps.next { Some(_) => panic!("New path ends where old path forks"), None => panic!("New path same as old path"), } } let Some((left, right)) = ps.next else { panic!("Old path ends where new path continues") }; let next = match steps[diff_idx] { Step::Left => Some((Box::new(merge(*left, &steps[diff_idx + 1..])), right)), Step::Right => Some((left, Box::new(merge(*right, &steps[diff_idx + 1..])))), }; PathSet { steps: ps.steps, next } } else { let shared_steps = ps.steps.iter().take(diff_idx).cloned().collect(); let main_steps = ps.steps.iter().skip(diff_idx + 1).cloned().collect(); let new_branch = steps[diff_idx + 1..].to_vec(); let main_side = PathSet { steps: main_steps, next: ps.next }; let new_side = PathSet { steps: new_branch, next: None }; let (left, right) = match steps[diff_idx] { Step::Left => (new_side, main_side), Step::Right => (main_side, new_side), }; PathSet { steps: shared_steps, next: Some((Box::new(left), Box::new(right))) } } } }, } break 'name ExprKind::Arg; }, } } ExprKind::Const(n.clone()) }, MacTok::Ph(_) | MacTok::Done(_) | MacTok::Ref(_) | MacTok::Slot(_) => ExprKind::Bottom(mk_errv( ctx.i.i("placeholder in value").await, "Placeholders cannot appear anywhere outside macro patterns", [x.pos.clone().into()], )), MacTok::S(Paren::Round, b) if b.is_empty() => return ExprKind::Bottom(mk_errv( ctx.i.i("Empty expression").await, "Empty parens () are illegal", [x.pos.clone().into()], )), MacTok::S(Paren::Round, b) => mtreev_to_expr(b, x_stack, ctx).boxed_local().await, MacTok::S(..) => ExprKind::Bottom(mk_errv( ctx.i.i("non-round parentheses after macros").await, "[] or {} block was not consumed by macros; expressions may only contain ()", [x.pos.clone().into()], )), MacTok::Lambda(_, b) if b.is_empty() => return ExprKind::Bottom(mk_errv( ctx.i.i("Empty lambda").await, "Lambdas must have a body", [x.pos.clone().into()], )), MacTok::Lambda(arg, b) => 'lambda_converter: { if let [MacTree { tok, .. }] = &**arg { if let MacTok::Name(n) = &**tok { let path = RefCell::new(None); let b = mtreev_to_expr(b, x_stack.push(SrcToExprStep::Lambda(n.clone(), &path)), ctx) .boxed_local() .await; break 'lambda_converter ExprKind::Lambda(path.into_inner(), b.at(x.pos.clone())); } } let argstr = take_first(&mtreev_fmt(arg, &FmtCtxImpl { i: &ctx.i }).await, true); ExprKind::Bottom(mk_errv( ctx.i.i("Malformeed lambda").await, format!("Lambda argument should be single name, found {argstr}"), [x.pos.clone().into()], )) }, }; if f.is_empty() { return x_kind; } let f = mtreev_to_expr(f, stack.push(SrcToExprStep::Left), ctx).boxed_local().await; ExprKind::Call(f.at(Pos::None), x_kind.at(x.pos.clone())) }