in midst of refactor

This commit is contained in:
2024-04-29 21:46:42 +02:00
parent ed0d64d52e
commit aa3f7e99ab
221 changed files with 5431 additions and 685 deletions

View File

@@ -0,0 +1,7 @@
import std::panic
export const block_on := \action. \cont. (
action cont
(\e.panic "unwrapped asynch call")
\c.yield
)

View File

@@ -0,0 +1,13 @@
use std::sync::{Arc, Mutex};
pub struct DeleteCell<T>(pub Arc<Mutex<Option<T>>>);
impl<T> DeleteCell<T> {
pub fn new(t: T) -> Self { Self(Arc::new(Mutex::new(Some(t)))) }
pub fn take(&self) -> Option<T> { self.0.lock().unwrap().take() }
}
impl<T: Clone> DeleteCell<T> {
pub fn clone_out(&self) -> Option<T> { self.0.lock().unwrap().clone() }
}
impl<T> Clone for DeleteCell<T> {
fn clone(&self) -> Self { Self(self.0.clone()) }
}

View File

@@ -0,0 +1,9 @@
//! An event queue other systems can use to trigger events on the main
//! interpreter thread. These events are handled when the Orchid code returns
//! `system::async::yield`, and may cause additional Orchid code to be executed
//! beyond being general Rust functions.
//! It also exposes timers.
mod delete_cell;
pub mod poller;
pub mod system;

View File

@@ -0,0 +1,151 @@
//! Abstract implementation of the poller
use std::collections::BinaryHeap;
use std::mem;
use std::sync::mpsc::{channel, Receiver, RecvError, RecvTimeoutError, Sender};
use std::thread::sleep;
use std::time::{Duration, Instant};
use super::delete_cell::DeleteCell;
enum TimerKind<TOnce, TRec> {
Once(DeleteCell<TOnce>),
Recurring { period: Duration, data_cell: DeleteCell<TRec> },
}
impl<TOnce, TRec> Clone for TimerKind<TOnce, TRec> {
fn clone(&self) -> Self {
match self {
Self::Once(c) => Self::Once(c.clone()),
Self::Recurring { period, data_cell: data } =>
Self::Recurring { period: *period, data_cell: data.clone() },
}
}
}
/// Indicates a bit of code which is to be executed at a
/// specific point in time
///
/// In order to work with Rust's builtin [BinaryHeap] which is a max heap, the
/// [Ord] implemenetation of this struct is reversed; it can be intuitively
/// thought of as ordering by urgency.
struct Timer<TOnce, TRec> {
expires: Instant,
kind: TimerKind<TOnce, TRec>,
}
impl<TOnce, TRec> Clone for Timer<TOnce, TRec> {
fn clone(&self) -> Self { Self { expires: self.expires, kind: self.kind.clone() } }
}
impl<TOnce, TRec> Eq for Timer<TOnce, TRec> {}
impl<TOnce, TRec> PartialEq for Timer<TOnce, TRec> {
fn eq(&self, other: &Self) -> bool { self.expires.eq(&other.expires) }
}
impl<TOnce, TRec> PartialOrd for Timer<TOnce, TRec> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> { Some(other.cmp(self)) }
}
impl<TOnce, TRec> Ord for Timer<TOnce, TRec> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering { other.expires.cmp(&self.expires) }
}
/// Representation of a scheduled timer
#[derive(Clone)]
pub struct TimerHandle<T>(DeleteCell<T>);
impl<T> TimerHandle<T> {
/// Cancel the timer
pub fn cancel(self) { mem::drop(self.0.take()) }
}
/// The abstract event poller implementation used by the standard asynch
/// subsystem.
pub struct Poller<TEv, TOnce, TRec: Clone> {
timers: BinaryHeap<Timer<TOnce, TRec>>,
receiver: Receiver<TEv>,
}
impl<TEv, TOnce, TRec: Clone> Poller<TEv, TOnce, TRec> {
/// Create an event poller and a [Sender] that can produce events on it.
pub fn new() -> (Sender<TEv>, Self) {
let (sender, receiver) = channel();
let this = Self { receiver, timers: BinaryHeap::new() };
(sender, this)
}
/// Set a single-fire timer
pub fn set_timeout(&mut self, duration: Duration, data: TOnce) -> TimerHandle<TOnce> {
let data_cell = DeleteCell::new(data);
self
.timers
.push(Timer { kind: TimerKind::Once(data_cell.clone()), expires: Instant::now() + duration });
TimerHandle(data_cell)
}
/// Set a recurring timer
pub fn set_interval(&mut self, period: Duration, data: TRec) -> TimerHandle<TRec> {
let data_cell = DeleteCell::new(data);
self.timers.push(Timer {
expires: Instant::now() + period,
kind: TimerKind::Recurring { period, data_cell: data_cell.clone() },
});
TimerHandle(data_cell)
}
/// Process a timer popped from the timers heap of this event loop.
/// This function returns [None] if the timer had been cancelled. **This
/// behaviour is different from [EventLoop::run] which is returns None if
/// the event loop is empty, even though the types are compatible.**
fn process_next_timer(
&mut self,
Timer { expires, kind }: Timer<TOnce, TRec>,
) -> Option<PollEvent<TEv, TOnce, TRec>> {
Some(match kind {
TimerKind::Once(data) => PollEvent::Once(data.take()?),
TimerKind::Recurring { period, data_cell } => {
let data = data_cell.clone_out()?;
self.timers.push(Timer {
expires: expires + period,
kind: TimerKind::Recurring { period, data_cell },
});
PollEvent::Recurring(data)
},
})
}
/// Block until a message is received or the first timer expires
pub fn run(&mut self) -> Option<PollEvent<TEv, TOnce, TRec>> {
loop {
if let Some(expires) = self.timers.peek().map(|t| t.expires) {
return match self.receiver.recv_timeout(expires - Instant::now()) {
Ok(t) => Some(PollEvent::Event(t)),
Err(e) => {
if e == RecvTimeoutError::Disconnected {
// The receiver is now inert, but the timer must finish
sleep(expires - Instant::now());
}
// pop and process the timer we've been waiting on
let timer = self.timers.pop().expect("checked before wait");
let result = self.process_next_timer(timer);
// if the timer had been cancelled, repeat
if result.is_none() {
continue;
}
result
},
};
} else {
return match self.receiver.recv() {
Ok(t) => Some(PollEvent::Event(t)),
Err(RecvError) => None,
};
}
}
}
}
/// Events produced by [Poller].
pub enum PollEvent<TEv, TOnce, TRec> {
/// An event was sent to the [Sender] associated with the [Poller].
Event(TEv),
/// A single-fire timer expired
Once(TOnce),
/// A recurring event fired
Recurring(TRec),
}

View File

@@ -0,0 +1,210 @@
//! Object to pass to [crate::facade::loader::Loader::add_system] to enable the
//! I/O subsystem. Also many other systems depend on it, these take a mut ref to
//! register themselves.
use std::any::{type_name, Any, TypeId};
use std::cell::RefCell;
use std::collections::VecDeque;
use std::fmt;
use std::rc::Rc;
use std::sync::mpsc::Sender;
use std::sync::{Arc, Mutex};
use std::time::Duration;
use hashbrown::HashMap;
use ordered_float::NotNan;
use rust_embed::RustEmbed;
use super::poller::{PollEvent, Poller, TimerHandle};
use crate::facade::system::{IntoSystem, System};
use crate::foreign::atom::Atomic;
use crate::foreign::cps_box::CPSBox;
use crate::foreign::error::RTError;
use crate::foreign::inert::{Inert, InertPayload};
use crate::gen::tpl;
use crate::gen::traits::Gen;
use crate::gen::tree::{atom_ent, xfn_ent, ConstTree};
use crate::interpreter::gen_nort::nort_gen;
use crate::interpreter::handler::HandlerTable;
use crate::interpreter::nort::Expr;
use crate::libs::std::number::Numeric;
use crate::location::{CodeGenInfo, CodeLocation};
use crate::sym;
use crate::utils::unwrap_or::unwrap_or;
use crate::virt_fs::{DeclTree, EmbeddedFS, PrefixFS, VirtFS};
#[derive(Debug, Clone)]
struct Timer {
recurring: bool,
delay: NotNan<f64>,
}
fn set_timer(rec: Inert<bool>, delay: Numeric) -> CPSBox<Timer> {
CPSBox::new(2, Timer { recurring: rec.0, delay: delay.as_float() })
}
#[derive(Clone)]
struct CancelTimer(Arc<Mutex<dyn Fn() + Send>>);
impl CancelTimer {
pub fn new<T: Send + Clone + 'static>(canceller: TimerHandle<T>) -> Self {
Self(Arc::new(Mutex::new(move || canceller.clone().cancel())))
}
pub fn cancel(&self) { self.0.lock().unwrap()() }
}
impl fmt::Debug for CancelTimer {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("CancelTimer").finish_non_exhaustive()
}
}
#[derive(Clone, Debug)]
struct Yield;
impl InertPayload for Yield {
const TYPE_STR: &'static str = "asynch::yield";
}
/// Error indicating a yield command when all event producers and timers had
/// exited
#[derive(Clone)]
pub struct InfiniteBlock;
impl RTError for InfiniteBlock {}
impl fmt::Display for InfiniteBlock {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
static MSG: &str = "User code yielded, but there are no timers or event \
producers to wake it up in the future";
write!(f, "{}", MSG)
}
}
/// A thread-safe handle that can be used to send events of any type
#[derive(Clone)]
pub struct MessagePort(Sender<Box<dyn Any + Send>>);
impl MessagePort {
/// Send an event. Any type is accepted, handlers are dispatched by type ID
pub fn send<T: Send + 'static>(&mut self, message: T) { let _ = self.0.send(Box::new(message)); }
}
fn gen() -> CodeGenInfo { CodeGenInfo::no_details(sym!(asynch)) }
#[derive(RustEmbed)]
#[folder = "src/libs/asynch"]
#[include = "*.orc"]
struct AsynchEmbed;
fn code() -> DeclTree {
DeclTree::ns("system::async", [DeclTree::leaf(
PrefixFS::new(EmbeddedFS::new::<AsynchEmbed>(".orc", gen()), "", "async").rc(),
)])
}
type AnyHandler<'a> = Box<dyn FnMut(Box<dyn Any>) -> Vec<Expr> + 'a>;
/// Datastructures the asynch system will eventually be constructed from.
pub struct AsynchSystem<'a> {
poller: Poller<Box<dyn Any + Send>, Expr, Expr>,
sender: Sender<Box<dyn Any + Send>>,
handlers: HashMap<TypeId, AnyHandler<'a>>,
}
impl<'a> AsynchSystem<'a> {
/// Create a new async event loop that allows registering handlers and taking
/// references to the port before it's converted into a [System]
#[must_use]
pub fn new() -> Self {
let (sender, poller) = Poller::new();
Self { poller, sender, handlers: HashMap::new() }
}
/// Register a callback to be called on the owning thread when an object of
/// the given type is found on the queue. Each type should signify a single
/// command so each type should have exactly one handler.
///
/// # Panics
///
/// if the given type is already handled.
pub fn register<T: 'static>(&mut self, mut f: impl FnMut(Box<T>) -> Vec<Expr> + 'a) {
let cb = move |a: Box<dyn Any>| f(a.downcast().expect("keyed by TypeId"));
let prev = self.handlers.insert(TypeId::of::<T>(), Box::new(cb));
assert!(prev.is_none(), "Duplicate handlers for async event {}", type_name::<T>())
}
/// Obtain a message port for sending messages to the main thread. If an
/// object is passed to the MessagePort that does not have a handler, the
/// main thread panics.
#[must_use]
pub fn get_port(&self) -> MessagePort { MessagePort(self.sender.clone()) }
}
impl<'a> Default for AsynchSystem<'a> {
fn default() -> Self { Self::new() }
}
impl<'a> IntoSystem<'a> for AsynchSystem<'a> {
fn into_system(self) -> System<'a> {
let Self { mut handlers, poller, .. } = self;
let mut handler_table = HandlerTable::new();
let polly = Rc::new(RefCell::new(poller));
handler_table.register({
let polly = polly.clone();
move |t: &CPSBox<Timer>| {
let mut polly = polly.borrow_mut();
let (Timer { delay, recurring }, action, cont) = t.unpack2();
let duration = Duration::from_secs_f64(**delay);
let cancel_timer = match *recurring {
true => CancelTimer::new(polly.set_interval(duration, action)),
false => CancelTimer::new(polly.set_timeout(duration, action)),
};
let tpl = tpl::A(tpl::Slot, tpl::V(CPSBox::new(1, cancel_timer)));
tpl.template(nort_gen(cont.location()), [cont])
}
});
handler_table.register(move |t: &CPSBox<CancelTimer>| {
let (command, cont) = t.unpack1();
command.cancel();
cont
});
handler_table.register({
let polly = polly.clone();
let mut microtasks = VecDeque::new();
move |_: &Inert<Yield>| {
if let Some(expr) = microtasks.pop_front() {
return Ok(expr);
}
let mut polly = polly.borrow_mut();
loop {
let next = unwrap_or!(polly.run();
return Err(InfiniteBlock.pack())
);
match next {
PollEvent::Once(expr) => return Ok(expr),
PollEvent::Recurring(expr) => return Ok(expr),
PollEvent::Event(ev) => {
let handler = (handlers.get_mut(&ev.as_ref().type_id()))
.unwrap_or_else(|| panic!("Unhandled messgae type: {:?}", (*ev).type_id()));
let events = handler(ev);
// we got new microtasks
if !events.is_empty() {
microtasks = VecDeque::from(events);
// trampoline
let loc = CodeLocation::new_gen(CodeGenInfo::no_details(sym!(system::asynch)));
return Ok(Inert(Yield).atom_expr(loc));
}
},
}
}
}
});
System {
name: "system::asynch",
lexer_plugins: vec![],
line_parsers: vec![],
constants: ConstTree::ns("system::async", [ConstTree::tree([
xfn_ent("set_timer", [set_timer]),
atom_ent("yield", [Inert(Yield)]),
])]),
code: code(),
prelude: Vec::new(),
handlers: handler_table,
}
}
}