transfer commit

This commit is contained in:
2023-02-03 14:40:34 +00:00
parent a500f8b87a
commit 3c63cae242
63 changed files with 3227 additions and 2850 deletions

View File

@@ -14,10 +14,10 @@ use super::split_at_max_vec::split_at_max_vec;
#[derive(Debug, Eq, PartialEq, Hash)]
pub struct CacheEntry<'a>(Mrc<[Expr]>, &'a SliceMatcherDnC);
impl<'a> Clone for CacheEntry<'a> {
fn clone(&self) -> Self {
let CacheEntry(mrc, matcher) = self;
CacheEntry(Mrc::clone(mrc), matcher)
}
fn clone(&self) -> Self {
let CacheEntry(mrc, matcher) = self;
CacheEntry(Mrc::clone(mrc), matcher)
}
}
@@ -31,281 +31,281 @@ impl<'a> Clone for CacheEntry<'a> {
/// a pattern on the entire tree.
#[derive(Clone, Eq)]
pub struct SliceMatcherDnC {
/// The entire pattern this will match
pattern: Mrc<[Expr]>,
/// The exact clause this can match
clause: Mrc<Clause>,
/// Matcher for the parts of the pattern right from us
right_subm: Option<Box<SliceMatcherDnC>>,
/// Matcher for the parts of the pattern left from us
left_subm: Option<Box<SliceMatcherDnC>>,
/// Matcher for the body of this clause if it has one.
/// Must be Some if pattern is (Auto, Lambda or S)
body_subm: Option<Box<SliceMatcherDnC>>,
/// Matcher for the type of this expression if it has one (Auto usually does)
/// Optional
typ_subm: Option<Box<SliceMatcherDnC>>,
/// The entire pattern this will match
pattern: Mrc<[Expr]>,
/// The exact clause this can match
clause: Mrc<Clause>,
/// Matcher for the parts of the pattern right from us
right_subm: Option<Box<SliceMatcherDnC>>,
/// Matcher for the parts of the pattern left from us
left_subm: Option<Box<SliceMatcherDnC>>,
/// Matcher for the body of this clause if it has one.
/// Must be Some if pattern is (Auto, Lambda or S)
body_subm: Option<Box<SliceMatcherDnC>>,
/// Matcher for the type of this expression if it has one (Auto usually does)
/// Optional
typ_subm: Option<Box<SliceMatcherDnC>>,
}
impl PartialEq for SliceMatcherDnC {
fn eq(&self, other: &Self) -> bool {
self.pattern == other.pattern
}
fn eq(&self, other: &Self) -> bool {
self.pattern == other.pattern
}
}
impl std::hash::Hash for SliceMatcherDnC {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.pattern.hash(state);
}
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.pattern.hash(state);
}
}
impl SliceMatcherDnC {
/// If this is true, `clause`, `typ_subm`, `body_subm` and `clause_qual_name` are meaningless.
/// If it's false, it's also false for both side matchers.
pub fn clause_is_vectorial(&self) -> bool {
matches!(self.clause.as_ref(), Clause::Placeh{vec: Some(..), ..})
/// If this is true, `clause`, `typ_subm`, `body_subm` and `clause_qual_name` are meaningless.
/// If it's false, it's also false for both side matchers.
pub fn clause_is_vectorial(&self) -> bool {
matches!(self.clause.as_ref(), Clause::Placeh{vec: Some(..), ..})
}
/// If clause is a name, the qualified name this can match
pub fn clause_qual_name(&self) -> Option<Mrc<[String]>> {
if let Clause::Name { qualified, .. } = self.clause.as_ref() {Some(Mrc::clone(qualified))} else {None}
}
/// If clause is a Placeh, the key in the state the match will be stored at
pub fn state_key(&self) -> Option<&String> {
if let Clause::Placeh { key, .. } = self.clause.as_ref() {Some(key)} else {None}
}
pub fn own_max_size(&self, total: usize) -> Option<usize> {
if !self.clause_is_vectorial() {
if total == self.len() {Some(total)} else {None}
} else {
let margin = self.min(Side::Left) + self.min(Side::Right);
if margin + self.own_min_size() <= total {Some(total - margin)} else {None}
}
/// If clause is a name, the qualified name this can match
pub fn clause_qual_name(&self) -> Option<Mrc<[String]>> {
if let Clause::Name { qualified, .. } = self.clause.as_ref() {Some(Mrc::clone(qualified))} else {None}
}
pub fn own_min_size(&self) -> usize {
if let Clause::Placeh { vec: Some((_, nonzero)), .. } = self.clause.as_ref() {
if *nonzero {1} else {0}
} else {self.len()}
}
/// Enumerate all valid subdivisions based on the reported size constraints of self and
/// the two subranges
pub fn valid_subdivisions(&self,
range: Mrc<[Expr]>
) -> impl Iterator<Item = (Mrc<[Expr]>, Mrc<[Expr]>, Mrc<[Expr]>)> {
let own_max = unwrap_or!(self.own_max_size(range.len()); return box_empty());
let own_min = self.own_min_size();
let lmin = self.min(Side::Left);
let _lmax = self.max(Side::Left, range.len());
let rmin = self.min(Side::Right);
let _rmax = self.max(Side::Right, range.len());
let full_len = range.len();
Box::new((own_min..=own_max).rev().flat_map(move |own_len| {
let wiggle = full_len - lmin - rmin - own_len;
let range = Mrc::clone(&range);
(0..=wiggle).map(move |offset| {
let first_break = lmin + offset;
let second_break = first_break + own_len;
let left = mrc_derive(&range, |p| &p[0..first_break]);
let mid = mrc_derive(&range, |p| &p[first_break..second_break]);
let right = mrc_derive(&range, |p| &p[second_break..]);
(left, mid, right)
})
}))
}
pub fn new(pattern: Mrc<[Expr]>) -> Self {
let (clause, left_subm, right_subm) = mrc_try_derive(&pattern, |p| {
if p.len() == 1 {Some(&p[0].0)} else {None}
}).map(|e| (e, None, None))
.or_else(|| split_at_max_vec(Mrc::clone(&pattern)).map(|(left, _, right)| (
mrc_derive(&pattern, |p| &p[left.len()].0),
if !left.is_empty() {Some(Box::new(Self::new(left)))} else {None},
if !right.is_empty() {Some(Box::new(Self::new(right)))} else {None}
)))
.unwrap_or_else(|| (
mrc_derive(&pattern, |p| &p[0].0),
None,
Some(Box::new(Self::new(mrc_derive(&pattern, |p| &p[1..]))))
));
Self {
pattern, right_subm, left_subm,
clause: Mrc::clone(&clause),
body_subm: clause.body().map(|b| Box::new(Self::new(b))),
typ_subm: clause.typ().map(|t| Box::new(Self::new(t)))
}
/// If clause is a Placeh, the key in the state the match will be stored at
pub fn state_key(&self) -> Option<&String> {
if let Clause::Placeh { key, .. } = self.clause.as_ref() {Some(key)} else {None}
}
/// The shortest slice this pattern can match
fn len(&self) -> usize {
if self.clause_is_vectorial() {
self.min(Side::Left) + self.min(Side::Right) + self.own_min_size()
} else {self.pattern.len()}
}
/// Pick a subpattern based on the parameter
fn side(&self, side: Side) -> Option<&SliceMatcherDnC> {
match side {
Side::Left => &self.left_subm,
Side::Right => &self.right_subm
}.as_ref().map(|b| b.as_ref())
}
/// The shortest slice the given side can match
fn min(&self, side: Side) -> usize {self.side(side).map_or(0, |right| right.len())}
/// The longest slice the given side can match
fn max(&self, side: Side, total: usize) -> usize {
self.side(side).map_or(0, |m| if m.clause_is_vectorial() {
total - self.min(side.opposite()) - self.own_min_size()
} else {m.len()})
}
/// Take the smallest possible slice from the given side
fn slice_min<'a>(&self, side: Side, range: &'a [Expr]) -> &'a [Expr] {
side.slice(self.min(side), range)
}
/// Matches the body on a range
/// # Panics
/// when called on an instance that does not have a body (not Auto, Lambda or S)
fn match_body<'a>(&'a self,
range: Mrc<[Expr]>, cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
self.body_subm.as_ref()
.expect("Missing body matcher")
.match_range_cached(range, cache)
}
/// Matches the type and body on respective ranges
/// # Panics
/// when called on an instance that does not have a body (not Auto, Lambda or S)
fn match_parts<'a>(&'a self,
typ_range: Mrc<[Expr]>, body_range: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
let typ_state = if let Some(typ) = &self.typ_subm {
typ.match_range_cached(typ_range, cache)?
} else {State::new()};
let body_state = self.match_body(body_range, cache)?;
typ_state + body_state
}
/// Match the specified side-submatcher on the specified range with the cache
/// In absence of a side-submatcher empty ranges are matched to empty state
fn apply_side_with_cache<'a>(&'a self,
side: Side, range: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
match &self.side(side) {
None => {
if !range.is_empty() {None}
else {Some(State::new())}
},
Some(m) => cache.try_find(&CacheEntry(range, m)).map(|s| s.as_ref().to_owned())
}
pub fn own_max_size(&self, total: usize) -> Option<usize> {
if !self.clause_is_vectorial() {
if total == self.len() {Some(total)} else {None}
} else {
let margin = self.min(Side::Left) + self.min(Side::Right);
if margin + self.own_min_size() <= total {Some(total - margin)} else {None}
}
fn match_range_scalar_cached<'a>(&'a self,
target: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
let pos = self.min(Side::Left);
if target.len() != self.pattern.len() {return None}
let mut own_state = (
self.apply_side_with_cache(Side::Left, mrc_derive(&target, |t| &t[0..pos]), cache)?
+ self.apply_side_with_cache(Side::Right, mrc_derive(&target, |t| &t[pos+1..]), cache)
)?;
match (self.clause.as_ref(), &target.as_ref()[pos].0) {
(Clause::Literal(val), Clause::Literal(tgt)) => {
if val == tgt {Some(own_state)} else {None}
}
(Clause::Placeh{key, vec: None}, tgt_clause) => {
if let Some(real_key) = key.strip_prefix('_') {
if let Clause::Name { local: Some(value), .. } = tgt_clause {
own_state.insert_name(real_key, value)
} else {None}
} else {own_state.insert_scalar(&key, &target[pos])}
}
(Clause::S(c, _), Clause::S(c_tgt, body_range)) => {
if c != c_tgt {return None}
own_state + self.match_parts(to_mrc_slice(vec![]), Mrc::clone(body_range), cache)
}
(Clause::Name{qualified, ..}, Clause::Name{qualified: q_tgt, ..}) => {
if qualified == q_tgt {Some(own_state)} else {None}
}
(Clause::Lambda(name, _, _), Clause::Lambda(name_tgt, typ_tgt, body_tgt)) => {
// Primarily, the name works as a placeholder
if let Some(state_key) = name.strip_prefix('$') {
own_state = own_state.insert_name(state_key, name_tgt)?
} else if name != name_tgt {return None}
// ^ But if you're weird like that, it can also work as a constraint
own_state + self.match_parts(Mrc::clone(typ_tgt), Mrc::clone(body_tgt), cache)
}
(Clause::Auto(name_opt, _, _), Clause::Auto(name_range, typ_range, body_range)) => {
if let Some(name) = name_opt {
// TODO: Enforce this at construction, on a type system level
let state_key = name.strip_prefix('$')
.expect("Auto patterns may only reference, never enforce the name");
own_state = own_state.insert_name_opt(state_key, name_range.as_ref())?
}
own_state + self.match_parts(Mrc::clone(typ_range), Mrc::clone(body_range), cache)
},
_ => None
}
pub fn own_min_size(&self) -> usize {
if let Clause::Placeh { vec: Some((_, nonzero)), .. } = self.clause.as_ref() {
if *nonzero {1} else {0}
} else {self.len()}
}
/// Enumerate all valid subdivisions based on the reported size constraints of self and
/// the two subranges
pub fn valid_subdivisions(&self,
range: Mrc<[Expr]>
) -> impl Iterator<Item = (Mrc<[Expr]>, Mrc<[Expr]>, Mrc<[Expr]>)> {
let own_max = unwrap_or!(self.own_max_size(range.len()); return box_empty());
let own_min = self.own_min_size();
let lmin = self.min(Side::Left);
let _lmax = self.max(Side::Left, range.len());
let rmin = self.min(Side::Right);
let _rmax = self.max(Side::Right, range.len());
let full_len = range.len();
Box::new((own_min..=own_max).rev().flat_map(move |own_len| {
let wiggle = full_len - lmin - rmin - own_len;
let range = Mrc::clone(&range);
(0..=wiggle).map(move |offset| {
let first_break = lmin + offset;
let second_break = first_break + own_len;
let left = mrc_derive(&range, |p| &p[0..first_break]);
let mid = mrc_derive(&range, |p| &p[first_break..second_break]);
let right = mrc_derive(&range, |p| &p[second_break..]);
(left, mid, right)
})
}))
}
}
pub fn new(pattern: Mrc<[Expr]>) -> Self {
let (clause, left_subm, right_subm) = mrc_try_derive(&pattern, |p| {
if p.len() == 1 {Some(&p[0].0)} else {None}
}).map(|e| (e, None, None))
.or_else(|| split_at_max_vec(Mrc::clone(&pattern)).map(|(left, _, right)| (
mrc_derive(&pattern, |p| &p[left.len()].0),
if !left.is_empty() {Some(Box::new(Self::new(left)))} else {None},
if !right.is_empty() {Some(Box::new(Self::new(right)))} else {None}
)))
.unwrap_or_else(|| (
mrc_derive(&pattern, |p| &p[0].0),
None,
Some(Box::new(Self::new(mrc_derive(&pattern, |p| &p[1..]))))
));
Self {
pattern, right_subm, left_subm,
clause: Mrc::clone(&clause),
body_subm: clause.body().map(|b| Box::new(Self::new(b))),
typ_subm: clause.typ().map(|t| Box::new(Self::new(t)))
}
/// Match the range with a vectorial _assuming we are a vectorial_
fn match_range_vectorial_cached<'a>(&'a self,
name: &str,
target: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
// Step through valid slicings based on reported size constraints in order
// from longest own section to shortest and from left to right
for (left, own, right) in self.valid_subdivisions(target) {
return Some(unwrap_or!(
self.apply_side_with_cache(Side::Left, left, cache)
.and_then(|lres| lres + self.apply_side_with_cache(Side::Right, right, cache))
.and_then(|side_res| side_res.insert_vec(name, own.as_ref()));
continue
))
}
None
}
/// The shortest slice this pattern can match
fn len(&self) -> usize {
if self.clause_is_vectorial() {
self.min(Side::Left) + self.min(Side::Right) + self.own_min_size()
} else {self.pattern.len()}
}
/// Pick a subpattern based on the parameter
fn side(&self, side: Side) -> Option<&SliceMatcherDnC> {
match side {
Side::Left => &self.left_subm,
Side::Right => &self.right_subm
}.as_ref().map(|b| b.as_ref())
}
/// The shortest slice the given side can match
fn min(&self, side: Side) -> usize {self.side(side).map_or(0, |right| right.len())}
/// The longest slice the given side can match
fn max(&self, side: Side, total: usize) -> usize {
self.side(side).map_or(0, |m| if m.clause_is_vectorial() {
total - self.min(side.opposite()) - self.own_min_size()
} else {m.len()})
}
/// Take the smallest possible slice from the given side
fn slice_min<'a>(&self, side: Side, range: &'a [Expr]) -> &'a [Expr] {
side.slice(self.min(side), range)
/// Try and match the specified range
pub fn match_range_cached<'a>(&'a self,
target: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
if self.pattern.is_empty() {
return if target.is_empty() {Some(State::new())} else {None}
}
if self.clause_is_vectorial() {
let key = self.state_key().expect("Vectorial implies key");
self.match_range_vectorial_cached(key, target, cache)
} else {self.match_range_scalar_cached(target, cache)}
}
/// Matches the body on a range
/// # Panics
/// when called on an instance that does not have a body (not Auto, Lambda or S)
fn match_body<'a>(&'a self,
range: Mrc<[Expr]>, cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
self.body_subm.as_ref()
.expect("Missing body matcher")
.match_range_cached(range, cache)
}
/// Matches the type and body on respective ranges
/// # Panics
/// when called on an instance that does not have a body (not Auto, Lambda or S)
fn match_parts<'a>(&'a self,
typ_range: Mrc<[Expr]>, body_range: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
let typ_state = if let Some(typ) = &self.typ_subm {
typ.match_range_cached(typ_range, cache)?
} else {State::new()};
let body_state = self.match_body(body_range, cache)?;
typ_state + body_state
}
pub fn get_matcher_cache<'a>()
-> Cache<'a, CacheEntry<'a>, Option<State>> {
Cache::new(
|CacheEntry(tgt, matcher), cache| {
matcher.match_range_cached(tgt, cache)
}
)
}
/// Match the specified side-submatcher on the specified range with the cache
/// In absence of a side-submatcher empty ranges are matched to empty state
fn apply_side_with_cache<'a>(&'a self,
side: Side, range: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
match &self.side(side) {
None => {
if !range.is_empty() {None}
else {Some(State::new())}
},
Some(m) => cache.try_find(&CacheEntry(range, m)).map(|s| s.as_ref().to_owned())
}
}
fn match_range_scalar_cached<'a>(&'a self,
target: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
let pos = self.min(Side::Left);
if target.len() != self.pattern.len() {return None}
let mut own_state = (
self.apply_side_with_cache(Side::Left, mrc_derive(&target, |t| &t[0..pos]), cache)?
+ self.apply_side_with_cache(Side::Right, mrc_derive(&target, |t| &t[pos+1..]), cache)
)?;
match (self.clause.as_ref(), &target.as_ref()[pos].0) {
(Clause::Literal(val), Clause::Literal(tgt)) => {
if val == tgt {Some(own_state)} else {None}
}
(Clause::Placeh{key, vec: None}, tgt_clause) => {
if let Some(real_key) = key.strip_prefix('_') {
if let Clause::Name { local: Some(value), .. } = tgt_clause {
own_state.insert_name(real_key, value)
} else {None}
} else {own_state.insert_scalar(&key, &target[pos])}
}
(Clause::S(c, _), Clause::S(c_tgt, body_range)) => {
if c != c_tgt {return None}
own_state + self.match_parts(to_mrc_slice(vec![]), Mrc::clone(body_range), cache)
}
(Clause::Name{qualified, ..}, Clause::Name{qualified: q_tgt, ..}) => {
if qualified == q_tgt {Some(own_state)} else {None}
}
(Clause::Lambda(name, _, _), Clause::Lambda(name_tgt, typ_tgt, body_tgt)) => {
// Primarily, the name works as a placeholder
if let Some(state_key) = name.strip_prefix('$') {
own_state = own_state.insert_name(state_key, name_tgt)?
} else if name != name_tgt {return None}
// ^ But if you're weird like that, it can also work as a constraint
own_state + self.match_parts(Mrc::clone(typ_tgt), Mrc::clone(body_tgt), cache)
}
(Clause::Auto(name_opt, _, _), Clause::Auto(name_range, typ_range, body_range)) => {
if let Some(name) = name_opt {
// TODO: Enforce this at construction, on a type system level
let state_key = name.strip_prefix('$')
.expect("Auto patterns may only reference, never enforce the name");
own_state = own_state.insert_name_opt(state_key, name_range.as_ref())?
}
own_state + self.match_parts(Mrc::clone(typ_range), Mrc::clone(body_range), cache)
},
_ => None
}
}
/// Match the range with a vectorial _assuming we are a vectorial_
fn match_range_vectorial_cached<'a>(&'a self,
name: &str,
target: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
// Step through valid slicings based on reported size constraints in order
// from longest own section to shortest and from left to right
for (left, own, right) in self.valid_subdivisions(target) {
return Some(unwrap_or!(
self.apply_side_with_cache(Side::Left, left, cache)
.and_then(|lres| lres + self.apply_side_with_cache(Side::Right, right, cache))
.and_then(|side_res| side_res.insert_vec(name, own.as_ref()));
continue
))
}
None
}
/// Try and match the specified range
pub fn match_range_cached<'a>(&'a self,
target: Mrc<[Expr]>,
cache: &Cache<CacheEntry<'a>, Option<State>>
) -> Option<State> {
if self.pattern.is_empty() {
return if target.is_empty() {Some(State::new())} else {None}
}
if self.clause_is_vectorial() {
let key = self.state_key().expect("Vectorial implies key");
self.match_range_vectorial_cached(key, target, cache)
} else {self.match_range_scalar_cached(target, cache)}
}
pub fn get_matcher_cache<'a>()
-> Cache<'a, CacheEntry<'a>, Option<State>> {
Cache::new(
|CacheEntry(tgt, matcher), cache| {
matcher.match_range_cached(tgt, cache)
}
)
}
pub fn match_range(&self, target: Mrc<[Expr]>) -> Option<State> {
self.match_range_cached(target, &Self::get_matcher_cache())
}
pub fn match_range(&self, target: Mrc<[Expr]>) -> Option<State> {
self.match_range_cached(target, &Self::get_matcher_cache())
}
}
impl Debug for SliceMatcherDnC {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Matcher")
.field("clause", &self.clause)
.field("vectorial", &self.clause_is_vectorial())
.field("min", &self.len())
.field("left", &self.left_subm)
.field("right", &self.right_subm)
.field("lmin", &self.min(Side::Left))
.field("rmin", &self.min(Side::Right))
.finish()
}
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Matcher")
.field("clause", &self.clause)
.field("vectorial", &self.clause_is_vectorial())
.field("min", &self.len())
.field("left", &self.left_subm)
.field("right", &self.right_subm)
.field("lmin", &self.min(Side::Left))
.field("rmin", &self.min(Side::Right))
.finish()
}
}